Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Chem Rec ; 24(2): e202300300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063808

RESUMO

Actual problems of development of catalysts for hydrogenation of heterocyclic compounds by hydrogen are summarized and discussed. The scope of review covers composites of nanoparticles of platinum group metals and 3d metals for heterogeneous catalytic processes. Such problems include increase of catalyst activity, which is important for reduction of precious metals content; development of new catalytic systems which do not contain metals of platinum group or contain cheaper analogues of Pd; control of factors which make influence on the selectivity of the catalysts; achievement of high reproducibility of the catalyst's performance and quality control of the catalysts. Own results of the authors are also summarized and described. The catalysts were prepared by decomposition of Pd0 and Ni0 complexes, pyrolysis of Ni2+ and Co2+ complexes deposited on aerosil and reduction of Ni2+ in pores of porous support in situ. The developed catalysts were used for hydrogenation of multigram batches of heterocyclic compounds.

2.
J Environ Sci (China) ; 139: 389-417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105064

RESUMO

This review provides insight into the current research trend in transition metal oxides (TMOs)-based photocatalysis in removing the organic colouring matters from water. For easy understanding, the research progress has been presented in four generations according to the catalyst composition and mode of application, viz: single component TMOs (the first-generation), doped TMOs/binary TMOs/doped binary TMOs (the second-generation), inactive/active support-immobilized TMOs (the third-generation), and ternary/quaternary compositions (the fourth-generation). The first two generations represent suspended catalysts, the third generation is supported catalysts, and the fourth generation can be suspended or supported. The review provides an elaborated comparison between suspended and supported catalysts, their general/specific requirements, key factors controlling degradation, and the methodologies for performance evaluation. All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated. The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed. Future research trends are also presented.


Assuntos
Poluentes Ambientais , Óxidos , Água
3.
Small ; : e2307859, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072811

RESUMO

Metallic substrates, widely studied in the context of monolithic catalysts, offer inherent advantages in heterogeneous catalysis due to their exceptional thermal conductivity and mechanical properties. However, synthesizing stable monolithic catalysts with metallic substrates in a well-controlled manner remains a significant challenge. Here, this work introduces a simple, cost-efficient method to fabricate robust Cu mesh-supported thermo-catalysts using a modified cycling chronopotentiometry approach, where the Cu mesh serves as a donor of Cu ions. In this method, the Cu mesh surface generates two distinct layers of CuO and Cu2 O. In this context, CuO acts as the active phase, accounting for the high CO oxidation activity of Cu mesh catalysts with T90 ≈ 120 °C. Additionally, these catalysts exhibit considerable potential in electrocatalysis, showcasing significant research and application value.

4.
Small ; 19(39): e2302611, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37264721

RESUMO

Metal single-atom catalysts are promising in electrochemical CO2 reduction reaction (CO2 RR). The pores and cavities of the supports can promote the exposure of active sites and mass transfer of reactants, hence improve their performance. Here, iron oxalate is added to ZIF-8 and subsequently form hollow carbon nanocages during calcination. The formation mechanism of the hollow structure is studied in depth by controlling variables during synthesis. Kirkendall effect is the main reason for the formation of hollow porous carbon nanocages. The hollow porous carbon nanocages with Fe single atoms exhibit better CO2 RR activity and CO selectivity. The diffusion of CO2 facilitated by the mesoporous structure of carbon nanocage results in their superior activity and selectivity. This work has raised an effective strategy for the synthesis of hollow carbon nanomaterials, and provides a feasible pathway for the rational design of electrocatalysts for small molecule activation.

5.
Chem Rec ; 23(11): e202300148, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37417711

RESUMO

Heterogeneous noble metal catalysts exhibit various functions. Although their redox functions have been extensively studied, we focused on their soft Lewis acid functions. Supported Au, Pt, and Pd catalysts electrophilically attack the π-electrons of soft bases such as alkynes, alkenes, and aromatic compounds to perform addition and substitution reactions. Hydroamination, intramolecular cyclization of alkynyl carboxylic acids, isomerization of allylic esters, vinyl exchange reactions, Wacker oxidation, and oxidative homocoupling of aromatics are introduced based on a discussion of the active species and reaction mechanisms. Furthermore, the adsorption of sulfur compounds, which are soft bases, onto the supported AuNPs is discussed. The adsorption and removal of 1,3-dimethyltrisulfane (DMTS), which is the compound responsible for the stale odor of "hine-ka" in alcoholic beverages, particularly Japanese sake, is described.

6.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108301

RESUMO

Ionic liquids are used in various fields due to their unique physical properties and are widely utilized as reaction solvents in the field of synthetic organic chemistry. We have previously proposed a new organic synthetic method in which the catalyst and reaction reagents are supported on ionic liquids. This method has various advantages, such as the ability to reuse the reaction solvent and catalyst and its facile post-reaction treatment. In this paper, we describe the synthesis of an ionic liquid-supported anthraquinone photocatalyst and the synthesis of benzoic acid derivatives using this system. This synthesis of benzoic acid derivatives via the cleavage of vicinal diols by an ionic liquid-supported anthraquinone photocatalyst is an environmentally friendly process, and furthermore, it has a simple post-reaction process, and the catalyst and solvent can both be reused. To the best of our knowledge, this is the first report on the synthesis of benzoic-acid derivatives via the cleavage of vicinal diols using light and an ionic-liquid-supported catalyst.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Solventes , Oxirredução , Química Orgânica/métodos , Catálise
7.
Angew Chem Int Ed Engl ; 62(18): e202301297, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36855938

RESUMO

Supported vanadia (VOx ) is a versatile catalyst for various redox processes where ceria-supported VOx have shown to be particularly active in the oxidative dehydrogenation (ODH) of alcohols. In this work, we clarify the origin of the volcano-shaped ethanol ODH activity trend for VOx /CeOx catalysts using operando quick V K- and Ce L3 - edge XAS experiments performed under transient conditions. We quantitatively demonstrate that both vanadium and cerium are synergistically involved in alcohol ODH. The concentration of reversible Ce4+ /Ce3+ species was identified as the main descriptor of the alcohol ODH activity. The activity drop in the volcano plot, observed at above ca. 3 V nm-2 surface loading (ca. 30 % of VOx monolayer coverage), is related to the formation of spectator V4+ and Ce3+ species, which were identified here for the first time. These results might prove to be helpful for the rational optimization of VOx /CeO2 catalysts and the refinement of the theoretical models.

8.
Angew Chem Int Ed Engl ; 62(39): e202309929, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37584440

RESUMO

The regeneration of the reduced form cofactor NAD(P)H is essential for the extra-cellular application of bio-reduction, which necessitates not only the development of efficient artificial NAD(P)H regeneration catalytic system but also its well compatibility with the cascade enzymatic reduction system. In this work, we reported the preparation of a metal nanoparticle (NP) and metal complex integrated core-shell nanoreactor for H2 -driven NAD(P)H regeneration through the immobilization of a Rh complex on Ni/TiO2 surface via a bipyridine contained 3D porous organic polymer (POP). In comparison with the corresponding single component metal NPs and the immobilized Rh complex, the integrated catalyst presented simultaneously enhanced activity and selectivity in NAD(P)H regeneration thanks to the rapid spillover of activated H species from metal NPs to Rh complex. In addition, the size-sieving effect of POP precluded the direct interaction of enzyme and Rh complex confined in the pores, enabling the success coupling of core-shell nanoreactor and aldehyde ketone reductase (AKR) for chemoenzymatic reduction of acetophenone to (R)-1-phenylethan-1-ol. This work provides a strategy for the rational manipulation of multicomponent cooperation catalysis.


Assuntos
Complexos de Coordenação , NAD , Catálise , Regeneração , Nanotecnologia
9.
Chemistry ; 28(39): e202200069, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35416347

RESUMO

The rapid development of continuous flow processes is driving innovations in various chemical syntheses and industrial productions. Immobilizing catalysts in flow reactors allows transformations with high-efficiency and excludes the subsequent separation procedures. This concept outlines the approaches to incorporate catalysts within flow reactors, with particular focus on the application of additional supports including inorganic materials like silica, zeolite and reduced graphene oxide, polymeric materials like polymer packings, monoliths, cross-linked gels and polymer brushes, and other materials for specific conditions like transparent glass fibers and glass beads. Furthermore, advanced methods to develop ordered micro-/nanoarrays from internal walls of flow channels for immobilization of catalysts as well as application of innovative vortex fluidic devices are discussed to inspire new designs of supports for novel fluidic reactors with broad applications.

10.
Chemistry ; 28(49): e202200684, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35702936

RESUMO

Pd-based catalysts are the most widely used for CO oxidation because of their outstanding catalytic activity and thermal stability. However, fundamental understanding of the detailed catalytic processes occurring on Pd-based catalysts under realistic conditions is still lacking. In this study, we investigated CO oxidation on metallic Pd clusters supported on Al2 O3 and SiO2 . High-angle annular dark-field scanning transmission electron microscopy revealed the formation of similar-sized Pd clusters on Al2 O3 and SiO2 . In contrast, CO chemisorption analysis indicated a gradual change in the dispersion of Pd (from 0.79 to 0.2) on Pd/Al2 O3 and a marginal change in the dispersion (from 0.4 to 0.24) on Pd/SiO2 as the Pd loading increased from 0.27 to 5.5 wt %; these changes were attributed to differences in the metal-support interactions. Diffuse reflectance infrared Fourier-transform spectroscopy revealed that fewer a-top CO species were present in Pd supported on Al2 O3 than those in Pd supported on SiO2 , which is related to the morphological differences in the metallic Pd clusters on these two supports. Despite the different dispersion profiles and surface characteristics of Pd, O2 titration demonstrated that linearly bound CO (with an infrared signal at 2090 cm-1 ) reacted first with oxygen in the case of CO-saturated Pd on Al2 O3 and SiO2 , which suggests that a-top CO on the terrace site plays an important role in CO oxidation. The experimental observations were corroborated by periodic density functional calculations, which confirmed that CO oxidation on the (111) terrace sites is most plausible, both kinetically and thermodynamically, compared to that on the edge or corner sites. This study will deepen the fundamental understanding of the effect of Pd clusters on CO oxidation under reaction conditions.

11.
Chem Rec ; 22(7): e202100328, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35263021

RESUMO

Catalyst utilization is a key economic factor in heterogeneous catalysis, particularly, when noble metals are used as the active phase. A huge saving on catalyst cost can be achieved with developing a single atomic layer of the active catalyst on a given cheap support. Besides the economic benefit, single atom catalysts (SACs) have also shown superior activity and selectivity relative to catalytic particles or nanoparticles; yet they are prone to aggregation and deactivation. The development of effective, stable, and commercially viable SACs is still a huge challenge. One of the remaining key obstacles is the ability to easily and effectively tune SACs-support interactions and coordination in a way that enables the production of robust, stable, and versatile SACs. Accordingly, the coordination and interactions between metallic supports and SACs and their impacts on SACs stability and activity are reviewed in this article.

12.
Nano Lett ; 21(12): 5324-5329, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34109786

RESUMO

The stability of supported metal nanoparticles determines the activity and lifetime of heterogeneous catalysts. Catalysts can destabilize through several thermodynamic and kinetic pathways, and the competition between these mechanisms complicates efforts to quantify and predict the overall evolution of supported nanoparticles in reactive environments. Pairing in situ transmission electron microscopy with unsupervised machine learning, we quantify the destabilization of hundreds of supported Au nanoparticles in real-time to develop a model describing the observed particle evolution as a competition between evaporation and surface diffusion. Data mining of particle evolution statistics allows us to determine physically reasonable values for the model parameters, quantify the particle size at which the Gibbs-Thomson pressure accelerates the evaporation process, and explore how individual particle interactions deviate from the mean-field model. This approach can be applied to a wide range of supported nanoparticle systems, allowing quantitative insight into the mechanisms that control their evolution in reactive environments.


Assuntos
Nanopartículas Metálicas , Catálise , Ouro , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
13.
Molecules ; 27(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35268595

RESUMO

Hydrogenation of phenol in aqueous solutions on Pt-Ni/SiO2, Pt-Ni-Cr/Al2O3, Pt/C, and Ru/C catalysts was studied at temperatures of 150-250 °C and pressures of 40-80 bar. The possibility of hydrogenation of hydrolysis lignin in an aqueous medium in the presence of a Ru/C catalyst is shown. The conversion of hydrolysis lignin and water-soluble sodium lignosulfonate occurs with the formation of a complex mixture of monomeric products: a number of phenols, products of their catalytic hydrogenation (cyclohexanol and cyclohexanone), and hydrogenolysis products (cyclic and aliphatic C2-C7 hydrocarbons).

14.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144747

RESUMO

This article gives an overview of the research activity of the LAC2 team at LCC developed at Castres in the field of sustainable chemistry with an emphasis on the collaboration with a research team from the University of Zagreb, Faculty of Science, Croatia. The work is situated within the context of sustainable chemistry for the development of catalytic processes. Those processes imply molecular complexes containing oxido-molybdenum, -vanadium, -tungsten or simple polyoxometalates (POMs) as catalysts for organic solvent-free epoxidation. The studies considered first the influence of the nature of complexes (and related ligands) on the reactivity (assessing mechanisms through DFT calculations) with model substrates. From those model processes, the work has been enlarged to the valorization of biomass resources. A part concerns the activity on vanadium chemistry and the final part concerns the use of POMs as catalysts, from molecular to grafted catalysts, (ep)oxidizing substrates from fossil and biomass resources.


Assuntos
Tungstênio , Vanádio , Catálise , Molibdênio/química , Oxirredução , Tungstênio/química , Vanádio/química
15.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558016

RESUMO

Functionalized aluminosilicate materials were studied as catalysts for the conversion of different cyclic carbonates to the corresponding epoxides by the addition of CO2. Aluminum was incorporated in the mesostructured SBA-15 silica network. Thereafter, functionalization with imidazolium chloride or magnesium oxide was performed on the Al_SBA-15 supports. The isomorphic substitution of Si with Al and the resulting acidity of the supports were investigated via 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and NH3 adsorption microcalorimetry. The Al content and the amount of MgO were quantified via inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. The anchoring of the imidazolium salt was assessed by 29Si and 13C MAS NMR spectroscopy and quantified by combustion chemical analysis. Textural and structural properties of supports and catalysts were studied by N2 physisorption and X-ray diffraction (XRD). The functionalized systems were then tested as catalysts for the conversion of CO2 and epoxides to cyclic carbonates in a batch reactor at 100 or 125 °C, with an initial CO2 pressure (at room temperature) of 25 bar. Whereas the activity of the MgO/xAl_SBA-15 systems was moderate for the conversion of glycidol to the corresponding cyclic carbonate, the Al_SBA-15-supported imidazolium chloride catalysts gave excellent results over different epoxides (conversion of glycidol, epichlorohydrin, and styrene oxide up to 89%, 78%, and 18%, respectively). Reusability tests were also performed. Even when some deactivation from one run to the other was observed, a comparison with the literature showed the Al-containing imidazolium systems to be promising catalysts. The fully heterogeneous nature of the present catalysts, where the inorganic support on which the imidazolium species are immobilized also contains the Lewis acid sites, gives them a further advantage with respect to most of the catalytic systems reported in the literature so far.

16.
Angew Chem Int Ed Engl ; 61(40): e202208016, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35972468

RESUMO

Ball milling is growing increasingly important as an alternative synthetic tool to prepare catalytic materials. It was recently observed that supported metal catalysts could be directly obtained upon ball milling from the coarse powders of metal and oxide support. Moreover, when two compatible metal sources are simultaneously subjected to the mechanochemical treatment, bimetallic nanoparticles are obtained. A systematic investigation was extended to different metals and supports to understand better the mechanisms involved in the comminution and alloying of metal nanoparticles. Based on this, a model describing the role of metal-support interactions in the synthesis was developed. The findings will be helpful for the future rational design of supported metal catalysts via dry ball milling.

17.
Angew Chem Int Ed Engl ; 61(34): e202205873, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35644917

RESUMO

Although supported anionic gold nanoparticle catalysts have been theoretically investigated for their efficacy in activating O2 in aerobic oxidation reactions, limited studies have been reported due to the difficulty of designing these catalysts. Herein, we developed a feasible method for preparing supported anionic gold nanoparticle catalysts using multivacant lacunary polyoxometalates with high negative charges. We confirmed the strong and robust electronic interaction between gold nanoparticles and multivacant lacunary polyoxometalates, and the electronic states of the supported gold nanoparticle catalysts can be sequentially modulated. Particularly, the catalyst prepared using [SiW9 O34 ]10- acted as an efficient reusable heterogeneous catalyst, showing superior catalytic performance for the oxidative dehydrogenation of piperidone derivatives to the corresponding enaminones and remarkably higher stability than supported gold nanoparticle catalysts without this modification.

18.
Angew Chem Int Ed Engl ; 61(32): e202206108, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35670014

RESUMO

Charge transfer between metal sites and supports is crucial for catalysis. Redox-inert supports are usually unfavorable due to their less electronic interaction with metal sites, which, we demonstrate, is not always correct. Herein, three metal-organic frameworks (MOFs) are chosen to mimic inert or active supports for Pt nanoparticles (NPs) and the photocatalysis is studied. Results demonstrate the formation of a Schottky junction between Pt and the MOFs, leading to the electron-donation effect of the MOFs. Under light irradiation, both the MOF electron-donation effect and Pt interband excitation dominate the Pt electron density. Compared with the "active" UiO-66 and MIL-125 supports, Pt NPs on the "inert" ZIF-8 exhibit higher electron density due to the higher Schottky barrier, resulting in superior photocatalytic activity. This work optimizes metal catalysts with non-reducible supports, and promotes the understanding of the relationship between the metal-support interaction and photocatalysis.

19.
Small ; 17(6): e2007264, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33470516

RESUMO

Developing a rapid and low cost approach to access atomically dispersed metal catalysts (ADMCs) supported by carbon is important but still challenging. Here, an electric flash strategy using high voltage for the rapid fabrication of carbon-supported ADMCs within 1 min is reported. Continuous plasma arc results in nitrogen-doped carbon ultrathin nanosheets, while an intermittent spark pulse constructs carbon hollow nanospheres via blasting effect, and both structures are decorated with atomically dispersed cobalt. The latter catalyst shows a half-wave potential of 0.887 V versus RHE (47 mV higher than commercial Pt/C) in an oxygen reduction reaction (ORR) in alkaline media. The authors' work paves the way to rapid synthesis of carbon-supported ADMCs at both low cost and mass production.

20.
Chemistry ; 27(43): 11084-11093, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34018643

RESUMO

The donor strength of bifunctional pyridine-cyclopentadienyl ligands was altered systematically by the introduction of donating groups in the para-position of the pyridine. In the resulting chromium complexes an almost linear correlation between donor strength and the nitrogen-chromium distance as well as the electronic absorption maximum is experimentally observed. The connection of electron-donating groups in the ligand backbone leads to an efficient transfer of the electronic influences to the catalytically active metal centre without restricting it through steric effects. Therefore, catalytic olefin polymerization activity, which is already very high for the previously studied catalysts, increase considerably by attaching para-amino groups to the chelating pyridine or quinoline, respectively. Combining electron-rich indenyl ligands with para-amino substituted pyridines lead to the highest catalytic activities observed so far for this class of organo chromium olefin polymerisation catalysts. The resulting polymers are of ultra-high molecular weight and the ability of the catalysts to incorporate co-monomers is also very high.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa