Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 967
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39168120

RESUMO

Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/ß-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/ß-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/ß-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/ß-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/ß-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants.

2.
J Biol Chem ; 300(6): 107341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705393

RESUMO

Inactivating mutations of genes encoding the cohesin complex are common in a wide range of human cancers. STAG2 is the most commonly mutated subunit. Here we report the impact of stable correction of endogenous, naturally occurring STAG2 mutations on gene expression, 3D genome organization, chromatin loops, and Polycomb signaling in glioblastoma multiforme (GBM). In two GBM cell lines, correction of their STAG2 mutations significantly altered the expression of ∼10% of all expressed genes. Virtually all the most highly regulated genes were negatively regulated by STAG2 (i.e., expressed higher in STAG2-mutant cells), and one of them-HEPH-was regulated by STAG2 in uncultured GBM tumors as well. While STAG2 correction had little effect on large-scale features of 3D genome organization (A/B compartments, TADs), STAG2 correction did alter thousands of individual chromatin loops, some of which controlled the expression of adjacent genes. Loops specific to STAG2-mutant cells, which were regulated by STAG1-containing cohesin complexes, were very large, supporting prior findings that STAG1-containing cohesin complexes have greater loop extrusion processivity than STAG2-containing cohesin complexes and suggesting that long loops may be a general feature of STAG2-mutant cancers. Finally, STAG2 mutation activated Polycomb activity leading to increased H3K27me3 marks, identifying Polycomb signaling as a potential target for therapeutic intervention in STAG2-mutant GBM tumors. Together, these findings illuminate the landscape of STAG2-regulated genes, A/B compartments, chromatin loops, and pathways in GBM, providing important clues into the largely still unknown mechanism of STAG2 tumor suppression.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Mutação , Proteínas do Grupo Polycomb , Transdução de Sinais , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Linhagem Celular Tumoral , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Genoma Humano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Coesinas
3.
Am J Hum Genet ; 109(8): 1520-1533, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931053

RESUMO

Germline PTEN variants (PTEN hamartoma tumor syndrome [PHTS]) confer up to 85% lifetime risk of female breast cancer (BC). BCs arising in PHTS are clinically distinct from sporadic BCs, including younger age of onset, multifocality, and an increased risk of second primary BCs. Yet, there is no previous investigation into the underlying genomic landscape of this entity. We sought to address the hypothesis that BCs arising in PHTS have a distinct genomic landscape compared to sporadic counterparts. We performed and analyzed exome sequencing data from 44 women with germline PTEN variants who developed BCs. The control cohort comprised of 497 women with sporadic BCs from The Cancer Genome Atlas (TCGA) dataset. We demonstrate that PHTS-derived BCs have a distinct somatic mutational landscape compared to the sporadic counterparts, namely second somatic hits in PTEN, distinct mutational signatures, and increased genomic instability. The PHTS group had a significantly higher frequency of somatic PTEN variants compared to TCGA (22.7% versus 5.6%; odds ratio [OR] 4.93; 95% confidence interval [CI] 2.21 to 10.98; p < 0.001) and a lower mutational frequency in PIK3CA (22.7% versus 33.4%; OR 0.59; 95% CI 0.28 to 1.22; p = 0.15). Somatic variants in PTEN and PIK3CA were mutually exclusive in PHTS (p = 0.01) but not in TCGA. Our findings have important implications for the personalized management of PTEN-related BCs, especially in the context of more accessible genetic testing.


Assuntos
Neoplasias da Mama , Síndrome do Hamartoma Múltiplo , Neoplasias da Mama/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Exoma/genética , Feminino , Genômica , Células Germinativas/patologia , Mutação em Linhagem Germinativa/genética , Síndrome do Hamartoma Múltiplo/genética , Humanos , PTEN Fosfo-Hidrolase/genética
4.
FASEB J ; 38(7): e23609, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593345

RESUMO

PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.


Assuntos
Proteoglicanas de Heparan Sulfato , Neoplasias , Humanos , Proteoglicanas de Heparan Sulfato/metabolismo , Mutação Puntual , Proteínas da Matriz Extracelular/genética , Imunoglobulinas , Estabilidade Proteica , Tirosina/genética , Monoéster Fosfórico Hidrolases/genética , Heparitina Sulfato , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
5.
EMBO Rep ; 24(12): e56815, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37846480

RESUMO

HACE1 is a HECT family E3 ubiquitin-protein ligase with broad but incompletely understood tumor suppressor activity. Here, we report a previously unrecognized link between HACE1 and signaling complexes containing mammalian target of rapamycin (mTOR). HACE1 blocks mTORC1 and mTORC2 activities by reducing mTOR stability in an E3 ligase-dependent manner. Mechanistically, HACE1 binds to and ubiquitylates Ras-related C3 botulinum toxin substrate 1 (RAC1) when RAC1 is associated with mTOR complexes, including at focal adhesions, leading to proteasomal degradation of RAC1. This in turn decreases the stability of mTOR to reduce mTORC1 and mTORC2 activity. HACE1 deficient cells show enhanced mTORC1/2 activity, which is reversed by chemical or genetic RAC1 inactivation but not in cells expressing the HACE1-insensitive mutant, RAC1K147R . In vivo, Rac1 deletion reverses enhanced mTOR expression in KRasG12D -driven lung tumors of Hace1-/- mice. HACE1 co-localizes with mTOR and RAC1, resulting in RAC1-dependent loss of mTOR protein stability. Together, our data demonstrate that HACE1 destabilizes mTOR by targeting RAC1 within mTOR-associated complexes, revealing a unique ubiquitin-dependent process to control the activity of mTOR signaling complexes.


Assuntos
Ubiquitina-Proteína Ligases , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Cancer Metastasis Rev ; 42(4): 1061-1063, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37581870

RESUMO

Metastasis is the leading cause of cancer patient mortality. Metastasis suppressors are genes that, upon reexpression in metastatic tumor cells to levels observed in their nonmetastatic counterparts, significantly reduce metastasis without affecting the growth of the primary tumor. Analysis of > 30 metastasis suppressors revealed complex mechanisms of action that include multiple signaling pathways, transcriptional patterns, posttranscriptional regulatory mechanisms, and potential contributions of genomic stability. Clinical testing of strategies to re-establish a validated metastasis suppressor pathway in tumors is best directed to the adjuvant setting, with the goal of inhibiting the outgrowth of occult micrometastases.


Assuntos
Genes Supressores de Tumor , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica
7.
BMC Cancer ; 24(1): 19, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167030

RESUMO

BACKGROUND: GBM is the most frequent malignant primary brain tumor in humans. The CLEC19A is a member of the C-type lectin family, which has a high expression in brain tissue. Herein, we sought to carry out an in-depth analysis to pinpoint the role of CLEC19A expression in GBM. METHODS: To determine the localization of CLEC19A, this protein was detected using Western blot, Immunocytochemistry/Immunofluorescence, and confocal microscopy imaging. CLEC19A expression in glioma cells and tissues was evaluated by qRT-PCR. Cell viability, proliferation, migration, and apoptosis were examined through MTT assay, CFSE assay, colony formation, wound healing assay, transwell test, and flow cytometry respectively after CLEC19A overexpression. The effect of CLEC19A overexpression on the PI3K/AKT/NF-κB signaling pathway was investigated using Western blot. An in vivo experiment substantiated the in vitro results using the glioblastoma rat models. RESULTS: Our in-silico analysis using TCGA data and measuring CLEC19A expression level by qRT-PCR determined significantly lower expression of CLEC19A in human glioma tissues compared to healthy brain tissues. By employment of ICC/IF, confocal microscopy imaging, and Western blot we could show that CLEC19A is plausibly a secreted protein. Results obtained from several in vitro readouts showed that CLEC19A overexpression in U87 and C6 glioma cell lines is associated with the inhibition of cell proliferation, viability, and migration. Further, qRT-PCR and Western blot analysis showed CLEC19A overexpression could reduce the expression levels of PI3K, VEGFα, MMP2, and NF-κB and increase PTEN, TIMP3, RECK, and PDCD4 expression levels in glioma cell lines. Furthermore, flow cytometry results revealed that CLEC19A overexpression was associated with significant cell cycle arrest and promotion of apoptosis in glioma cell lines. Interestingly, using a glioma rat model we could substantiate that CLEC19A overexpression suppresses glioma tumor growth. CONCLUSIONS: To our knowledge, this is the first report providing in-silico, molecular, cellular, and in vivo evidences on the role of CLEC19A as a putative tumor suppressor gene in GBM. These results enhance our understanding of the role of CLEC19A in glioma and warrant further exploration of CLEC19A as a potential therapeutic target for GBM.


Assuntos
Glioblastoma , Glioma , Lectinas Tipo C , Animais , Humanos , Ratos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/metabolismo , Glioma/patologia , Proteínas Ligadas por GPI/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo
8.
J Neurooncol ; 167(1): 63-74, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427133

RESUMO

BACKGROUND: Glioma is a type of malignant cancer that affect the central nervous system. New predictive biomarkers have been investigated in recent years, but the clinical prognosis for glioma remains poor. The function of CPLX2 in glioma and the probable molecular mechanism of tumor suppression were the focus of this investigation. METHODS: The glioma transcriptome profile was downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases for analysis of CPLX2 expression in glioma. RT-qPCR was performed to detect the expression of CPLX2 in 68 glioma subjects who have been followed up. Kaplan-Meier survival analyses were conducted to assess the effect of CPLX2 on the prognosis of glioma patients. The knockdown and overexpressed cell lines of CPLX2 were constructed to investigate the impact of CPLX2 on glioma. The cell growth, colony formation, and tumor formation in xenograft were performed. RESULTS: The expression of CPLX2 was downregulated in glioma and was negatively correlated with the grade of glioma. The higher expression of CPLX2 predicted a longer survival, as indicated by the analysis of Kaplan-Meier survival curves. Overexpressed CPLX2 impaired tumorigenesis in glioma progression both in vivo and in vitro. Knocking down CPLX2 promoted the proliferation of glioma cells. The analysis of GSEA and co-expression analysis revealed that CPLX2 may affect the malignancy of glioma by regulating the hypoxia and inflammation pathways. CONCLUSIONS: Our data indicated that CPLX2 functions as a tumor suppressor and could be used as a potential prognostic marker in glioma.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Neoplasias Encefálicas , Glioma , Proteínas Supressoras de Tumor , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Estimativa de Kaplan-Meier , Prognóstico , Transcriptoma , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Cancer Treat Res ; 191: 217-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39133410

RESUMO

The scientific innovations have emphasized the importance of diet for one's health and wellbeing. The genetic revolution has enhanced our understanding about the effect of nutrients on genomic and transcriptomic profiles and gene-nutrition interactions (nutritional genomics). Furthermore, the contribution of micronutrient insufficiencies and macronutrient excess is evident in the development and progression of many diseases, especially cancer. It is speculated that nutrients have capacity to implicitly affect the physiological and pathophysiological processes via gene expression various regulatory processes. Moreover, the nutrients are known to affect the cellular networks involved in cancer progression and cancer inhibitory mechanisms targeting apoptosis or impaired angiogenesis. The interplay of regulatory processes in physiological systems and nutrients provides basis for the nutrigenomics. The functional genomics data further argue that cellular and molecular processes involved in the cancer progression are possibly programed genes during early development which may persist into adulthood and become detrimental. The incorporation of the functional interactions between nutrients and the genome has revolutionized the field of personalized medicine and provided the foundation for targeted cancer therapy through nutrients. There is growing evidence on the beneficial impacts of eating habits on lowering the risk of cancer, even if it can be difficult to pinpoint the precise role of nutrients. The nutrigenomic information may provide bases to develop disease prevention and treatment via nutrition, at the molecular level.


Assuntos
Neoplasias , Nutrigenômica , Humanos , Neoplasias/prevenção & controle , Neoplasias/genética , Neoplasias/etiologia , Nutrigenômica/métodos , Genômica/métodos
10.
Cell Biol Int ; 48(8): 1069-1079, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38884348

RESUMO

ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.


Assuntos
Isoformas de Proteínas , Humanos , Isoformas de Proteínas/metabolismo , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Neoplasias/metabolismo , Ligação Proteica
11.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38372062

RESUMO

Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.


Assuntos
MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células HeLa , Inativação Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , RNA Mensageiro/genética
12.
J Pathol ; 261(3): 256-268, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565350

RESUMO

Adenoid cystic carcinoma (ACC) is a MYB-driven head and neck malignancy with high rates of local recurrence and distant metastasis and poor long-term survival. New effective targeted therapies and clinically useful biomarkers for patient stratification are needed to improve ACC patient survival. Here, we present an integrated copy number and transcriptomic analysis of ACC to identify novel driver genes and prognostic biomarkers. A total of 598 ACCs were studied. Clinical follow-up was available from 366 patients, the largest cohort analyzed to date. Copy number losses of 1p36 (70/492; 14%) and of the tumor suppressor gene PARK2 (6q26) (85/343; 25%) were prognostic biomarkers; patients with concurrent losses (n = 20) had significantly shorter overall survival (OS) than those with one or no deletions (p < 0.0001). Deletion of 1p36 independently predicted short OS in multivariate analysis (p = 0.02). Two pro-apoptotic genes, TP73 and KIF1B, were identified as putative 1p36 tumor suppressor genes whose reduced expression was associated with poor survival and increased resistance to apoptosis. PARK2 expression was markedly reduced in tumors with 6q deletions, and PARK2 knockdown increased spherogenesis and decreased apoptosis, indicating that PARK2 is a tumor suppressor in ACC. Moreover, analysis of the global gene expression pattern in 30 ACCs revealed a transcriptomic signature associated with short OS, multiple copy number alterations including 1p36 deletions, and reduced expression of TP73. Taken together, the results indicate that TP73 and PARK2 are novel putative tumor suppressor genes and potential prognostic biomarkers in ACC. Our studies provide new important insights into the pathogenesis of ACC. The results have important implications for biomarker-driven stratification of patients in clinical trials. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Prognóstico , Genes Supressores de Tumor , Neoplasias de Cabeça e Pescoço/genética , Transcriptoma , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
13.
Respirology ; 29(9): 815-824, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38654512

RESUMO

BACKGROUND AND OBJECTIVE: Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease associated with the functional tumour suppressor genes TSC1 and TSC2 and causes structural destruction in the lungs, which could potentially increase the risk of lung cancer. However, this relationship remains unclear because of the rarity of the disease. METHODS: We investigated the relative risk of developing lung cancer among patients diagnosed with LAM between 2001 and 2022 at a single high-volume centre in Japan, using data from the Japanese Cancer Registry as the reference population. Next-generation sequencing (NGS) was performed in cases where tumour samples were available. RESULTS: Among 642 patients diagnosed with LAM (sporadic LAM, n = 557; tuberous sclerosis complex-LAM, n = 80; unclassified, n = 5), 13 (2.2%) were diagnosed with lung cancer during a median follow-up period of 5.13 years. All patients were female, 61.5% were never smokers, and the median age at lung cancer diagnosis was 53 years. Eight patients developed lung cancer after LAM diagnosis. The estimated incidence of lung cancer was 301.4 cases per 100,000 person-years, and the standardized incidence ratio was 13.6 (95% confidence interval, 6.2-21.0; p = 0.0008). Actionable genetic alterations were identified in 38.5% of the patients (EGFR: 3, ALK: 1 and ERBB2: 1). No findings suggested loss of TSC gene function in the two patients analysed by NGS. CONCLUSION: Our study revealed that patients diagnosed with LAM had a significantly increased risk of lung cancer. Further research is warranted to clarify the carcinogenesis of lung cancer in patients with LAM.


Assuntos
Neoplasias Pulmonares , Linfangioleiomiomatose , Humanos , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/epidemiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiologia , Feminino , Japão/epidemiologia , Pessoa de Meia-Idade , Fatores de Risco , Adulto , Incidência , Idoso , Estudos de Coortes , Masculino , Sistema de Registros , População do Leste Asiático
14.
Oral Dis ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887830

RESUMO

OBJECTIVE: Downregulation of N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor gene, has been associated with poor clinical outcomes in various cancers. However, the prognostic significance of NDRG2 in oral squamous cell carcinoma (OSCC) remains unknown. This study aimed to evaluate the prognostic value of NDRG2 downregulation in OSCC and to elucidate the mechanism by which NDRG2 is downregulated and the biological role of NDRG2 in tumor progression. METHODS: Immunohistochemical and in silico analyses of NDRG2 expression were performed, and the correlation between NDRG2 expression and clinicopathological data was analyzed. The effect of NDRG2 knockdown on the biological behavior of OSCC cells was investigated and the effect of 5-aza-2'-deoxycytidine (5-aza-dC) on NDRG2 expression was determined. RESULTS: NDRG2 expression was significantly downregulated and DNA hypermethylation of NDRG2 was frequently found in head and neck SCC, including OSCC. Low NDRG2 expression was significantly correlated with adverse clinicopathological features and worse survival in OSCC. NDRG2 knockdown could enhance the oncogenic properties of OSCC cells. NDRG2 mRNA levels in OSCC cells could be restored by 5-aza-dC. CONCLUSION: Downregulation of NDRG2 promotes tumor progression and predicts poor prognosis in OSCC. Therefore, restoration of NDRG2 expression may be a potential therapeutic strategy in OSCC.

15.
Childs Nerv Syst ; 40(5): 1609-1612, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38168858

RESUMO

BACKGROUND: BRCA1 and BRCA2 are tumor suppressor genes associated with increased risk of breast and ovarian cancer in adulthood. Patients with germline pathogenic variants in these genes have also been reported to develop brain tumors, although it is unclear whether these syndromes are associated with significant increased risk of brain tumor formation. RESULTS: Here, we report a case of a child with germline BRCA2 pathogenic variant presenting with a symptomatic ganglioglioma. To our knowledge, this is the first such patient to be reported. We discuss prior cases of brain tumors in BRCA1/2 patients and evidence for a potential role for BRCA1/2 pathogenic variants in brain tumor formation. CONCLUSION: BRCA2 germline variants may increase the risk of developing some types of pediatric brain tumors, but further study is needed to determine its effect on low-grade glioma formation.


Assuntos
Neoplasias Encefálicas , Ganglioglioma , Neoplasias Ovarianas , Feminino , Humanos , Criança , Proteína BRCA2/genética , Proteína BRCA1/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
16.
Environ Toxicol ; 39(2): 768-782, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37772720

RESUMO

Breast cancer is the most common malignancy in the world and one of the leading causes of cancer death, which is a heterogeneous disease involving genetic and environmental factors. Breast cancer stem cells (BCSCs) are the main players in the aggressiveness of different tumors, at the same time, these cells are the main challenge for cancer treatment. There are multiple treatment options for breast cancer (BC) patients and the lack of understanding of prognostic and predictive biomarkers for breast cancer is a potential research direction for us to develop better treatments in the future. In this paper, we conducted a correlation analysis between SIK2 and clinical traits by searching numerous BRCA datasets in the GEO database. The model was constructed and validated by incorporating tumor samples from the TCGA-BRCA cohort. Surprisingly, we found differential expression of SIK2 gene in individual tumor samples from the UCSC database. Subsequently, we found significantly high expression of SIK2 in epithelial cells by comparing the differential expression of SIK2 in different cell subpopulations and performed subsequent immune infiltration and pathway correlation analysis. Differential genes in SIK2+ epithelial cells, which may be potential therapeutic targets for breast cancer. In conclusion, our results suggest that SIK2 may be a potential prognostic and predictive biomarker that could serve as an oncogenic messenger for breast cancer. This discovery of SIK2 may provide more valuable references for potential therapeutic tools for breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células Epiteliais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
17.
Curr Issues Mol Biol ; 45(1): 738-751, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36661535

RESUMO

BACKGROUND: Colorectal cancer is highly common and causes high mortality rates. Treatment for colorectal cancer is multidisciplinary, but in most cases the main option remains surgery. Intriguingly, in recent years, a number of studies have shown that a patient's postoperative outcome may be influenced by certain anesthetic drugs. Our main objective was to compare the effect of propofol-total intravenous anesthesia (TIVA) with sevoflurane anesthesia and to investigate the potential role of intravenous lidocaine on colon cancer cell functions. We tested the effects of serum from colorectal cancer patients undergoing TIVA vs. sevoflurane anesthesia with or without lidocaine on HCT 116 cell lines; on proliferation, apoptosis, migration, and cell cycles; and on cancer-related gene expressions. METHODS: 60 patients who were scheduled for colorectal cancer surgery were randomized into four different groups (two groups with TIVA and two groups with sevoflurane anesthesia with or without intravenous lidocaine). Blood samples were collected at the start and at the end of surgery. HCT 116 cells were exposed to the patients' serum. RESULTS: 15 patients were included in each of the study groups. We did not find any significant difference on cell viability or apoptosis between the study groups. However, there was an increased apoptosis in propofol groups, but this result was not statistically significant. A significant increase in the expression profile of the TP53 gene in the propofol group was registered (p = 0.029), while in the other study groups, no significant differences were reported. BCL2 and CASP3 expressions increased in the sevoflurane-lidocaine group without statistical significance. CONCLUSIONS: In our study, serum from patients receiving different anesthetic techniques did not significantly influence the apoptosis, migration, and cell cycle of HCT-116 colorectal carcinoma cells. Viability was also not significantly influenced by the anesthetic technique, except the sevoflurane-lidocaine group where it was increased. The gene expression of TP53 was significantly increased in the propofol group, which is consistent with the results of similar in vitro studies and may be one of the mechanisms by which anesthetic agents may influence the biology of cancer cells. Further studies that investigate the effects of propofol and lidocaine in different plasma concentrations on different colon cancer cell lines and assess the impacts of these findings on the clinical outcome are much needed.

18.
Gastroenterology ; 162(4): 1303-1318.e18, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973294

RESUMO

BACKGROUND & AIMS: RNF43 is an E3 ubiquitin ligase that is recurrently mutated in pancreatic ductal adenocarcinoma (PDAC) and precursor cystic neoplasms of the pancreas. The impact of RNF43 mutations on PDAC is poorly understood and autochthonous models have not been characterized sufficiently. In this study, we describe a genetically engineered mouse model (GEMM) of PDAC with conditional expression of oncogenic Kras and deletion of the catalytic domain of Rnf43 in exocrine cells. METHODS: We generated Ptf1a-Cre;LSL-KrasG12D;Rnf43flox/flox (KRC) and Ptf1a-Cre; LSL-KrasG12D (KC) mice and animal survival was assessed. KRC mice were sacrificed at 2 months, 4 months, and at moribund status followed by analysis of pancreata by single-cell RNA sequencing. Comparative analyses between moribund KRC and a moribund Kras/Tp53-driven PDAC GEMM (KPC) was performed. Cell lines were isolated from KRC and KC tumors and interrogated by cytokine array analyses, ATAC sequencing, and in vitro drug assays. KRC GEMMs were also treated with an anti-CTLA4 neutralizing antibody with treatment response measured by magnetic response imaging. RESULTS: We demonstrate that KRC mice display a marked increase in incidence of high-grade cystic lesions of the pancreas and PDAC compared with KC. Importantly, KRC mice have a significantly decreased survival compared with KC mice. Using single-cell RNA sequencing, we demonstrated that KRC tumor progression is accompanied by a decrease in macrophages, as well as an increase in T and B lymphocytes, with evidence of increased immune checkpoint molecule expression and affinity maturation, respectively. This was in stark contrast to the tumor immune microenvironment observed in the KPC PDAC GEMM. Furthermore, expression of the chemokine CXCL5 was found to be specifically decreased in KRC cancer cells by means of epigenetic regulation and emerged as a putative candidate for mediating the unique KRC immune landscape. CONCLUSIONS: The KRC GEMM establishes RNF43 as a bona fide tumor suppressor gene in PDAC. This GEMM features a markedly different immune microenvironment compared with previously reported PDAC GEMMs and puts forth a rationale for an immunotherapy approach in this subset of PDAC cases.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ubiquitina-Proteína Ligases , Adenocarcinoma/genética , Animais , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Epigênese Genética , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral , Ubiquitina-Proteína Ligases/genética , Neoplasias Pancreáticas
19.
Cell Immunol ; 386: 104690, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36812767

RESUMO

BACKGROUND: We recently demonstrated decreased tumor suppressor gene liver kinase B1 (LKB1) level in lung transplant recipients diagnosed with bronchiolitis obliterans syndrome. STE20-related adaptor alpha (STRADα) functions as a pseudokinase that binds and regulates LKB1 activity. METHODS: A murine model of chronic lung allograft rejection in which a single lung from a B6D2F1 mouse was orthotopically transplanted into a DBA/2J mouse was employed. We examined the effect of LKB1 knockdown using CRISPR-CAS9 in vitro culture system. RESULTS: Significant downregulation of LKB1 and STRADα expression was found in donor lung compared to recipient lung. STRADα knockdown significantly inhibited LKB1, pAMPK expression but induced phosphorylated mammalian target of rapamycin (mTOR), fibronectin, and Collagen-I, expression in BEAS-2B cells. LKB1 overexpression decreased fibronectin, Collagen-I, and phosphorylated mTOR expression in A549 cells. CONCLUSIONS: We demonstrated that downregulation of LKB1-STRADα pathway accompanied with increased fibrosis, results in development of chronic rejection following murine lung transplantation.


Assuntos
Fibronectinas , Transplante de Pulmão , Animais , Camundongos , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação para Baixo , Camundongos Endogâmicos DBA , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Pulmão/metabolismo , Biomarcadores , Genes Supressores de Tumor , Aloenxertos , Colágeno/genética , Colágeno/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
20.
Clin Genet ; 104(4): 406-417, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37339860

RESUMO

Intratumor heterogeneity (ITH) results from accumulation of somatic mutations in the fractions of successive cancer cell generations. We aimed to use deep sequencing to investigate ITH in colorectal tumors with particular emphasis on variants in oncogenes (ONC) and tumor suppressor genes (TSG). Samples were collected from 16 patients with colorectal cancer and negative or positive lymph node status (n = 8 each). We deep-sequenced a panel of 56 cancer-related genes in the central and peripheral locations of T3 size primary tumors and healthy mucosa. The central region of T3 tumors has a different frequency profile and composition of genetic variants. This mutation profile is capable of independently discriminating patients with different lymph node status (p = 0.028) in the central region. We noted an increasing number of mutations outside of the central region of the tumor and a higher number of mutations in tumors from node-positive patients. Unexpectedly, in the healthy mucosa, we identified somatic mutations with variant allele frequencies, characteristic not only of heterozygotes and homozygotes but also of other discrete peaks (e.g., around 10%, 20%), suggestive of clonal expansion of certain mutant alleles. We found differences in the distribution of variant allele frequencies in TSGs when comparing node-negative and node-positive tumors (p = 0.029), as well as central and peripheral regions (p = 0.00399). TSGs may play an important role in the escape of the tumor toward metastatic colonization.


Assuntos
Neoplasias Colorretais , Humanos , Mutação , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genes Supressores de Tumor , Linfonodos/patologia , Heterogeneidade Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa