RESUMO
Surface acoustic waves are a powerful tool for controlling quantum systems, including quantum dots (QDs), where the oscillating strain field can modulate the emission wavelengths. We integrate InAsP/InP nanowire QDs onto a thin-film lithium niobate platform and embed them within Si3N4-loaded waveguides. We achieve a 0.70 nm peak-to-peak wavelength modulation at 13 dBm using a single focused interdigital transducer (FIDT) operating at 400 MHz, and we double this amplitude to 1.4 nm by using two FIDTs as an acoustic cavity. Additionally, we independently modulate two QDs with an initial wavelength difference of 0.5 nm, both integrated on the same chip. We show that their modulated emissions overlap, demonstrating the potential to bring them to a common emission wavelength after spectral filtering. This local strain-tuning represents a significant step toward generating indistinguishable single photons from remote emitters heterogeneously integrated on a single chip, advancing on-chip quantum information processing with multiple QDs.
RESUMO
We used a surface acoustic wave (SAW) cavity resonator to study the coupling of acoustic magnons in a synthetic antiferromagnet (SAF) and phonons carried by SAWs. The SAF is composed of a CoFeB/Ru/CoFeB trilayer, and the scattering matrix of the SAW resonator is studied to assess the coupling. We find that the spectral line width of the SAW resonator is modulated when the frequency of the excited magnons approaches the SAW resonance frequency. Such a change in the spectral linewidth can be well reproduced using macrospin-like model calculations. From the model analyses, we estimate the magnon-phonon coupling strength to be â¼9.9 MHz at a SAW resonance frequency of 1.8 GHz: the corresponding magnomechanical cooperativity is â¼0.66. As the spectral shape hardly changes in a CoFeB single-layer reference sample, these results show that SAF provides an ideal platform to study magnon-phonon coupling in an SAW cavity resonator.
RESUMO
Surface acoustic wave (SAW)-enabled acoustofluidic technologies have recently atttracted increasing attention for applications in biology, chemistry, biophysics, and medicine. Most SAW acoustofluidic devices generate acoustic energy which is then transmitted into custom microfabricated polymer-based channels. There are limited studies on delivering this acoustic energy into convenient commercially-available glass tubes for manipulating particles and fluids. Herein, we have constructed a capillary-based SAW acoustofluidic device for multifunctional fluidic and particle manipulation. This device integrates a converging interdigitated transducer to generate focused SAWs on a piezoelectric chip, as well as a glass capillary that transports particles and fluids. To understand the actuation mechanisms underlying this device, we performed finite element simulations by considering piezoelectric, solid mechanic, and pressure acoustic physics. This experimental study shows that the capillary-based SAW acoustofluidic device can perform multiple functions including enriching particles, patterning particles, transporting particles and fluids, as well as generating droplets with controlled sizes. Given the usefulness of these functions, we expect that this acoustofluidic device can be useful in applications such as pharmaceutical manufacturing, biofabrication, and bioanalysis.
RESUMO
In preceding research endeavors, the frequency characteristics of a ring resonator on surface acoustic waves made of various materials were studied. Investigations encompassed fixation techniques within the housing, the impact of external variables on these components, and the most efficient configuration of the interdigital transducer within the ring resonator to curtail bandwidth. This current study is dedicated to investigating the correlation between sensitivity and the highest measurable acceleration concerning the dimensions of these sensitive elements. Furthermore, it involves assessing the attributes of produced experimental samples to verify the simulation results. The results obtained represent the possibility of creating a micromechanical accelerometer that can be used in the automotive industry as a g-sensor shock, as well as in industries where the numerical value of high overloads is required.
RESUMO
The article presents the design concept of a surface acoustic wave (SAW)-based lab-on-a-chip sensor with multifrequency and multidirectional sensitivity. The conventional SAW sensors use delay lines that suffer from multiple signal losses such as insertion, reflection, transmission losses, etc. Most delay lines are designed to transmit and receive continuous signal at a fixed frequency. Thus, the delay lines are limited to only a few features, like frequency shift and change in wave velocity, during the signal analysis. These facts lead to limited sensitivity and a lack of opportunity to utilize the multi-directional variability of the sensing platform at different frequencies. Motivated by these facts, a guided wave sensing platform that utilizes simultaneous tone burst-based excitation in multiple directions is proposed in this article. The design incorporates a five-count tone burst signal for the omnidirectional actuation. This helps the acquisition of sensitive long part of the coda wave (CW) signals from multiple directions, which is hypothesized to enhance sensitivity through improved signal analysis. In this article, the design methodology and implementation of unique tone burst interdigitated electrodes (TB-IDT) are presented. Sensing using TB-IDT enables accessing multiple frequencies simultaneously. This results in a wider frequency spectrum and allows better scope for the detection of different target analytes. The novel design process utilized guided wave analysis of the substrate, and selective directional focused interdigitated electrodes (F-IDT) were implemented. The article demonstrates computational simulation along with experimental results with validation of multifrequency and multidirectional sensing capability.
RESUMO
One of the challenges of nanoelectromechanical systems (NEMS) is the effective transduction of the tiny resonators. Vertical structures, such as nanomechanical pillar resonators, which are exploited in optomechanics, acoustic metamaterials, and nanomechanical sensing, are particularly challenging to transduce. Existing electromechanical transduction methods are ill-suited as they put constraints on the pillars' material and do not enable a transduction of freestanding pillars. Here, we present an electromechanical transduction method for single nanomechanical pillar resonators based on surface acoustic waves (SAWs). We demonstrate the transduction of freestanding nanomechanical platinum-carbon pillars in the first-order bending and compression mode. Since the principle of the transduction method is based on resonant scattering of a SAW by a nanomechanical resonator, our transduction method is independent of the pillar's material and not limited to pillar-shaped geometries. It represents a general method to transduce vertical mechanical resonators with nanoscale lateral dimensions.
RESUMO
Ultrathin MoS2 has shown remarkable characteristics at the atomic scale with an immutable disorder to weak external stimuli. Ion beam modification unlocks the potential to selectively tune the size, concentration, and morphology of defects produced at the site of impact in 2D materials. Combining experiments, first-principles calculations, atomistic simulations, and transfer learning, it is shown that irradiation-induced defects can induce a rotation-dependent moiré pattern in vertically stacked homobilayers of MoS2 by deforming the atomically thin material and exciting surface acoustic waves (SAWs). Additionally, the direct correlation between stress and lattice disorder by probing the intrinsic defects and atomic environments are demonstrated. The method introduced in this paper sheds light on how engineering defects in the lattice can be used to tailor the angular mismatch in van der Waals (vdW) solids.
RESUMO
Extracellular vesicles (EVs) are secreted nanostructures that play various roles in critical cancer processes. They operate as an intercellular communication system, transferring complex sets of biomolecules from cell to cell. The concentration of EVs is difficult to decipher, and there is an unmet technological need for improved (faster, simpler, and gentler) approaches to isolate EVs from complex matrices. Herein, an acoustofluidic concentration of extracellular vesicles (ACEV) is presented, based on a thin-film printed circuit board with interdigital electrodes mounted on a piezoelectric substrate. An angle of 120° is identified between the electrodes and the reference flat of the piezoelectric substrate for simultaneous generation of Rayleigh and shear horizontal waves. The dual waves create a complex acoustic field in a droplet, resulting in effective concentration of nanoparticles and EVs. The ACEV is able to concentrate 20 nm nanospheres within 105 s and four EV dilutions derived from the human prostate cancer (Du145) cell line in approximately 30 s. Cryo-electron microscopy confirmed the preservation of EV integrity. The ACEV device holds great potential to revolutionize investigations of EVs. Its faster, simpler, and gentler approach to EV isolation and concentration can save time and effort in phenotypic and functional studies of EVs.
Assuntos
Vesículas Extracelulares , Nanosferas , Neoplasias da Próstata , Masculino , Humanos , Microscopia Crioeletrônica , Vesículas Extracelulares/metabolismo , Linhagem CelularRESUMO
We report on in vitro wound-healing and cell-growth studies under the influence of radio-frequency (rf) cell stimuli. These stimuli are supplied either by piezoactive surface acoustic waves (SAWs) or by microelectrode-generated electric fields, both at frequencies around 100 MHz. Employing live-cell imaging, we studied the time- and power-dependent healing of artificial wounds on a piezoelectric chip for different cell lines. If the cell stimulation is mediated by piezomechanical SAWs, we observe a pronounced, significant maximum of the cell-growth rate at a specific SAW amplitude, resulting in an increase of the wound-healing speed of up to 135 ± 85% as compared to an internal reference. In contrast, cells being stimulated only by electrical fields of the same magnitude as the ones exposed to SAWs exhibit no significant effect. In this study, we investigate this effect for different wavelengths, amplitude modulation of the applied electrical rf signal, and different wave modes. Furthermore, to obtain insight into the biological response to the stimulus, we also determined both the cell-proliferation rate and the cellular stress levels. While the proliferation rate is significantly increased for a wide power range, cell stress remains low and within the normal range. Our findings demonstrate that SAW-based vibrational cell stimulation bears the potential for an alternative method to conventional ultrasound treatment, overcoming some of its limitations.
Assuntos
Estimulação Acústica/métodos , Som/efeitos adversos , Vibração/uso terapêutico , Cicatrização/efeitos da radiação , Estimulação Acústica/efeitos adversos , Estimulação Acústica/instrumentação , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Terapia Combinada/efeitos adversos , Terapia Combinada/instrumentação , Terapia Combinada/métodos , Cães , Eletrodos , Humanos , Células Madin Darby de Rim Canino , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de OxigênioRESUMO
Gallium nitride (GaN), widely known as a wide bandgap semiconductor material, has been mostly employed in high power devices, light emitting diodes (LED), and optoelectronic applications. However, it could be exploited differently due to its piezoelectric properties, such as its higher SAW velocity and strong electromechanical coupling. In this study, we investigated the affect of the presence of a guiding layer made from titanium/gold on the surface acoustic wave propagation of the GaN/sapphire substrate. By fixing the minimum thickness of the guiding layer at 200 nm, we could observe a slight frequency shift compared to the sample without a guiding layer, with the presence of different types of surface mode waves (Rayleigh and Sezawa). This thin guiding layer could be efficient in transforming the propagation modes, acting as a sensing layer for the binding of biomolecules to the gold layer, and influencing the output signal in terms of frequency or velocity. The proposed GaN/sapphire device integrated with a guiding layer could possibly be used as a biosensor and in wireless telecommunication applications.
RESUMO
Blood viscosity is the defining health indicator for hyperviscosity syndrome patients. This paper introduces an alternative approach for the real-time monitoring of blood viscosity by employing a surface-horizontal surface acoustic wave (SH-SAW) device at room temperature. A novel bi-layer waveguide is constructed on top of the SAW device. This device enables the SAW sensing of liquid droplets utilizing a bi-layer waveguide, consisting of a zinc oxide (ZnO) enhancement layer and Parlyene C, that facilitates the promotion of the surface horizontal mode. The ZnO piezoelectric thin-film layer enhanced the local particle displacement and dielectric coupling while the Parylene C layer constrained the wave mode at the interface of the piezoelectric material and polymer material. The device was tested with a liquid drop on the SAW delay-line path. Both experimental and finite element analysis results demonstrated the benefits of the bi-layer waveguide. The simulation results confirmed that the displacement field of local particles increased 9 times from 1.261 nm to 11.353 nm with the Parylene C/ZnO bi-layer waveguide structure. The device demonstrated a sensitivity of 3.57 ± 0.3125 kHz shift per centipoise enabling the potential for high precision blood viscosity monitoring.
Assuntos
Óxido de Zinco , Humanos , Viscosidade , Óxido de Zinco/química , Som , PolímerosRESUMO
The manipulation of biomedical particles, such as separating circulating tumor cells from blood, based on standing surface acoustic wave (SSAW) has been widely used due to its advantages of label-free approaches and good biocompatibility. However, most of the existing SSAW-based separation technologies are dedicated to isolate bioparticles in only two different sizes. It is still challenging to fractionate various particles in more than two different sizes with high efficiency and accuracy. In this work, to tackle the problems of low efficiency for multiple cell particle separation, integrated multi-stage SSAW devices with different wavelengths driven by modulated signals were designed and studied. A three-dimensional microfluidic device model was proposed and analyzed using the finite element method (FEM). In addition, the effect of the slanted angle, acoustic pressure, and the resonant frequency of the SAW device on the particle separation were systemically studied. From the theoretical results, the separation efficiency of three different size particles based on the multi-stage SSAW devices reached 99%, which was significantly improved compared with conventional single-stage SSAW devices.
RESUMO
Assembly of DNA-coated colloids (DNACCs) provides a practical route to programming complex self-assembled materials at the micro/nanoscale. So far, the programmability of DNACC assembly has been extensively exploited internally using different DNA sequences or colloid geometry so that the assembly is mainly manipulated with single-particle spatial resolution such as in crystallization. In this Letter, we present an acoustic approach to externally programming the DNACC assembly with control of spatial resolution over larger scales. We demonstrate assembly of the DNACCs under different acoustic frequencies from stage to stage to produce hierarchical structures that are difficult to fabricate when using DNA coating alone. By programming the acoustic wave frequency, amplitude, and phase, colloidal structures with different morphologies can be assembled. The nonspecific driving force based on acoustic radiation forces at each stage allows our approach to be adopted for most colloidal systems without specific requirements on particle or medium properties.
Assuntos
Coloides , DNA , Sequência de Bases , Coloides/química , Cristalização , DNA/químicaRESUMO
On the way towards neuronal stimulation and signalling, standing surface acoustic waves (SSAWs) have become a widely used technique to create well-defined networks of living cellsin vitroduring the past years. An overall challenge in this research area is to maintain cell viability in long-term treatments long enough to observe changes in cellular functions. To close this gap, we here investigate SSAW-directed neurite outgrowth of B35 (neuroblastoma) cells in microchannels on LiNbO3chips, employing one-dimensional pulsed and continuous MHz-order SSAW signals at different intensities for up to 40 h. To increase the efficiency of future investigations, we explore the limits of applicable SSAW parameters by quantifying their viability and proliferation behaviour in this long-term setup. While cell viability is impaired for power levels above 15 dBm (32 mW), our investigations on SSAW-directed neurite outgrowth reveal a significant increase of neurites growing in preferential directions by up to 31.3% after 30 h of SSAW treatment.
Assuntos
Neuroblastoma , Acústica , Humanos , Neuritos/fisiologia , Crescimento Neuronal , NeurôniosRESUMO
In this paper, we present an overview of the latest achievements in surface acoustic wave (SAW) sensors for gas or liquid fluid, with a focus on the electrodes' topology and signal processing, as related to the application of the sensing device. Although the progress in this field is mainly due to advances in the materials science and the sensing coatings, the interdigital (IDT) electrodes' organization is also an important tool for setting the acoustic-wave-distribution mode, and, thus, for improvement of the SAW performance. The signal-conditioning system is of practical interest, as the implementation of the SAW, as a compact and mobile system is dependent on this electronic circuit. The precision of the detection of the SAW platform is related not only to the IDT electrodes' geometry but also to their location around the sensing layer. The most commonly used architectures are shown in the present paper. Finally, we identify the needs for the future improvement of these prospective sensors.
RESUMO
The optical excitation and propagation of converging surface acoustic waves on silicon with orientations (001) and (111) have been experimentally studied. An axicon-assisted formation of an annular irradiated region on the sample surface served as a source for converging surface waves. Surface wave patterns at different times were recorded using a Sagnac interferometer with spatial resolution. A study of the field distribution at the focus showed that, in spite of elastic anisotropy, which generally leads to aberrations, the acoustic energy can be concentrated into a spot with dimensions close to the diffraction limit. An asymmetric excitation distribution makes it possible to control the structure of the converged wave field at the focus, providing an effective tool for all-optical diagnostics of the local crystal structure as well as electronic properties of quantum objects embedded in the solid-state matrix.
RESUMO
In the ultrasonic non-destructive evaluation of thin films, it is essential to have ultrasonic transducers that are able to generate surface acoustic waves (SAW) of suitably high frequencies in a wide frequency range of between ten and several hundred megahertz. If the characterization is carried out with the transducer in contact with the sample, it is also necessary that the transducers provide a high level of mechanical displacement (>100 s pm). This level allows the wave to cross the transducer−sample interface and propagate over the distance of a few millimeters on the sample and be properly detected. In this paper, an emitter transducer formed of interdigitated chirp electrodes deposited on 128° Y-cut LiNbO3 is proposed. It is shown that this solution efficiently enables the generation of SAW (displacement level up to 1 nm) in a frequency range of between 100 and 240 MHz. The electrical characterization and a displacement field analysis of SAW by laser Doppler vibrometry are presented. The transducer's significant unidirectionality is demonstrated. Finally, the characterization of two titanium thin films deposited on silicon is presented as an example. A meaningful SAW velocity dispersion (~10 m/s) is obtained, which allows for the precise estimation (5% of relative error) of the submicrometer thickness of the layers (20 and 50 nm).
RESUMO
The key challenge for a lab-on-chip (LOC) device is the seamless integration of key elements of biosensing and actuation (e.g., biosampling or microfluidics), which are conventionally realised using different technologies. In this paper, we report a convenient and efficient LOC platform fabricated using an electrode patterned flexible printed circuit board (FPCB) pressed onto a piezoelectric film coated substrate, which can implement multiple functions of both acoustofluidics using surface acoustic waves (SAWs) and sensing functions using electromagnetic metamaterials, based on the same electrode on the FPCB. We explored the actuation capability of the integrated structure by pumping a sessile droplet using SAWs in the radio frequency range. We then investigated the hybrid sensing capability (including both physical and chemical ones) of the structure employing the concept of electromagnetic split-ring resonators (SRRs) in the microwave frequency range. The originality of this sensing work is based on the premise that the proposed structure contains three completely decoupled resonant frequencies for sensing applications and each resonance has been used as a separate physical or a chemical sensor. This feature compliments the acoustofluidic capability and is well-aligned with the goals set for a successful LOC device.
Assuntos
Microfluídica , Som , Ondas de Rádio , VibraçãoRESUMO
Surface acoustic waves (SAWs) are the guided waves that propagate along the top surface of a material with wave vectors orthogonal to the normal direction to the surface. Based on these waves, SAW sensors are conceptualized by employing piezoelectric crystals where the guided elastodynamic waves are generated through an electromechanical coupling. Electromechanical coupling in both active and passive modes is achieved by integrating interdigitated electrode transducers (IDT) with the piezoelectric crystals. Innovative meta-designs of the periodic IDTs define the functionality and application of SAW sensors. This review article presents the physics of guided surface acoustic waves and the piezoelectric materials used for designing SAW sensors. Then, how the piezoelectric materials and cuts could alter the functionality of the sensors is explained. The article summarizes a few key configurations of the electrodes and respective guidelines for generating different guided wave patterns such that new applications can be foreseen. Finally, the article explores the applications of SAW sensors and their progress in the fields of biomedical, microfluidics, chemical, and mechano-biological applications along with their crucial roles and potential plans for improvements in the long-term future in the field of science and technology.
RESUMO
Sorting of extracellular vesicles has important applications in early stage diagnostics. Current exosome isolation techniques, however, suffer from being costly, having long processing times, and producing low purities. Recent work has shown that active sorting via acoustic and electric fields are useful techniques for microscale separation activities, where combining these has the potential to take advantage of multiple force mechanisms simultaneously. In this work, we demonstrate an approach using both electrical and acoustic forces to manipulate bioparticles and submicrometer particles for deterministic sorting, where we find that the concurrent application of dielectrophoretic (DEP) and acoustophoretic forces decreases the critical diameter at which particles can be separated. We subsequently utilize this approach to sort subpopulations of extracellular vesicles, specifically exosomes (<200 nm) and microvesicles (>300 nm). Using our combined acoustic/electric approach, we demonstrate exosome purification with more than 95% purity and 81% recovery, well above comparable approaches.