Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Environ Sci Technol ; 57(19): 7516-7525, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37130379

RESUMO

The simultaneous precipitation of (Fe, Cr)(OH)3 nanoparticles in solution (homogeneous) and on soil surfaces (heterogeneous), which controls Cr transport in soil and aquatic systems, was quantified for the first time in the presence of model surfaces, i.e., bare and natural organic matter (NOM)-coated SiO2 and Al2O3. Various characterization techniques were combined to explore the surface-ion-precipitate interactions and the controlling mechanisms. (Fe, Cr)(OH)3 accumulation on negatively charged SiO2 was mainly governed by electrostatic interactions between hydrolyzed ion species or homogeneous (Fe, Cr)(OH)3 and surfaces. The elevated pH through protonation of Al2O3 surface hydroxyls resulted in higher Cr/Fe ratios in both homogeneous and heterogeneous coprecipitates. Due to ignorable NOM adsorption onto SiO2, the amounts of (Fe, Cr)(OH)3 precipitates on bare/NOM-SiO2 were similar; contrarily, attributed to favored NOM adsorption onto Al2O3 and consequently carboxyl association with metal ions or (Fe, Cr)(OH)3 nanoparticles, remarkably more heterogeneous precipitates harvested on NOM-Al2O3 than bare-Al2O3. With the same solution supersaturation, the total amounts of homogeneous and heterogeneous precipitates were similar irrespective of the substrate type. With lower pH, decreased electrostatic forces between substrates and precipitates shifted (Fe, Cr)(OH)3 distribution from heterogeneous to homogeneous phases. The quantitative knowledge of (Fe, Cr)(OH)3 distribution and the controlling mechanisms can assist in better Cr sequestration in natural and engineered settings.


Assuntos
Nanopartículas , Solo , Dióxido de Silício , Metais , Nanopartículas/química , Concentração de Íons de Hidrogênio , Adsorção
2.
J Environ Sci (China) ; 124: 678-687, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182173

RESUMO

The thermal deactivation of diesel soot particles exerts a significant influence on the control strategy for the regeneration of diesel particulate filters (DPFs). This work focused on the changes in the surface functional groups, carbon chemical state, and graphitization degree during thermal treatment in an inert gas environment at intermediate temperatures of 600°C, 800°C, and 1000°C and explore the chemical species that were desorbed from the diesel soot surface during thermal treatment using a thermogravimetric analyser coupled with a gas-chromatograph mass spectrometer (TGA-GC/MS). The surface functional groups and carbon chemical state were characterized using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The graphitization degree was evaluated by means of Raman spectroscopy (RS). The concentrations of aliphatic C-H, C-OH, C=O, and O-C=O groups are reduced for diesel soot and carbon black when increasing the thermal treatment temperature, while the sp2/sp3 hybridized ratio and graphitization degree enhance. These results provide comprehensive evidence of the decreased reactivity of soot samples. Among oxygenated functional groups, the percentage reduction during thermal treatment is the largest for the O-C=O groups owing to its worst thermodynamic stability. TGA-GC/MS results show that the aliphatic and aromatic chains and oxygenated species would be desorbed from the soot surface during 1000°C thermal treatment of diesel soot.


Assuntos
Carbono , Fuligem , Carbono/química , Poeira , Gases/química , Fuligem/química , Espectroscopia de Infravermelho com Transformada de Fourier , Emissões de Veículos/análise
3.
Anal Bioanal Chem ; 414(15): 4409-4425, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35234982

RESUMO

Surface functionalization is widely used to control the behavior of nanomaterials for a range of applications. However, methods to accurately quantify surface functional groups and coatings are not yet routinely applied to nanomaterial characterization. We have employed a combination of quantitative NMR (qNMR) and thermogravimetric analysis (TGA) to address this problem for commercial cerium, nickel, and iron oxide nanoparticles (NPs) that have been modified to add functional coatings with (3-aminopropyl)triethoxysilane (APTES), stearic acid, and polyvinylpyrrolidone (PVP). The qNMR method involves quantification of material that is released from the NPs and quantified in the supernatant after removal of NPs. Removal of aminopropylsilanes was accomplished by basic hydrolysis whereas PVP and stearic acid were removed by ligand exchange using sodium hexametaphosphate and pentadecafluorooctanoic acid, respectively. The method accuracy was confirmed by analysis of NPs with a known content of surface groups. Complementary TGA studies were carried out in both air and argon atmosphere with FT-IR of evolved gases in argon to confirm the identity of the functional groups. TGA measurements for some unfunctionalized samples show mass loss due to unidentified components which makes quantification of functional groups in surface-modified samples less reliable. XPS provides information on the presence of surface contaminants and the level of surface hydroxylation for selected samples. Despite the issues associated with accurate quantification using TGA, the TGA estimates agree reasonably well with the qNMR data for samples with high surface loading. This study highlights the issues in analysis of commercial nanomaterials and is an advance towards the development of generally applicable methods for quantifying surface functional groups.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Argônio , Nanopartículas Metálicas/química , Nanopartículas/química , Óxidos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Molecules ; 26(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34577111

RESUMO

Pore development and the formation of oxygen functional groups were studied for activated carbon prepared from bamboo (Bambusa bambos) using a two-step activation with CO2, as functions of carbonization temperature and activation conditions (time and temperature). Results show that activated carbon produced from bamboo contains mostly micropores in the pore size range of 0.65 to 1.4 nm. All porous properties of activated carbons increased with the increase in the activation temperature over the range from 850 to 950 °C, but decreased in the temperature range of 950 to 1000 °C, due principally to the merging of neighboring pores. The increase in the activation time also increased the porous properties linearly from 60 to 90 min, which then dropped from 90 to 120 min. It was found that the carbonization temperature played an important role in determining the number and distribution of active sites for CO2 gasification during the activation process. Empirical equations were proposed to conveniently predict all important porous properties of the prepared activated carbons in terms of carbonization temperature and activation conditions. Oxygen functional groups formed during the carbonization and activation steps of activated carbon synthesis and their contents were dependent on the preparation conditions employed. Using Boehm's titration technique, only phenolic and carboxylic groups were detected for the acid functional groups in both the chars and activated carbons in varying amounts. Empirical correlations were also developed to estimate the total contents of the acid and basic groups in activated carbons in terms of the carbonization temperature, activation time and temperature.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Adsorção , Nitrogênio/química , Porosidade , Temperatura
5.
Small ; 15(18): e1900235, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30963717

RESUMO

All-solid-state batteries (ASSBs) have lately received enormous attention for electric vehicle applications because of their exceptional stability by engaging all-solidified cell components. However, there are many formidable hurdles such as low ionic conductivity, interface instability, and difficulty in the manufacturing process, for its practical use. Recently, carbon, one of the representative conducting agents, turns out to largely participate in side reactions with the solid electrolyte, which finally leads to the formation of insulating side products at the interface. Although the battery community mentioned that parasitic reactions are presumably attributed to carbon itself or the generation of electronic conducting paths lowering the kinetic barrier for reactions, the underlying origin for such reactions as well as appropriate solutions have not been provided yet. In this study, for the first time, it is verified that the functional group on carbon is an origin for causing negative effects on interfacial stability and a graphitized hollow nanocarbon as a promising solution for improving-electrochemical performance is introduced. This work offers an invaluable lesson that a relatively minor part, such as a conducting agent, in ASSBs sometimes gives more positive impact on improving electrochemical performance than huge efforts for resolving other parts.

6.
Molecules ; 24(3)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678133

RESUMO

: In this study, the mechanisms of methylparaben adsorption onto activated carbon (AC) are elucidated starting from equilibrium and thermodynamic data. Adsorption tests are carried out on three ACs with different surface chemistry, in different pH and ionic strength aqueous solutions. Experimental results show that the methylparaben adsorption capacity is slightly affected by pH changes, while it is significantly reduced in the presence of high ionic strength. In particular, methylparaben adsorption is directly dependent on the micropore volume of the ACs and the π- stacking interactions, the latter representing the main interaction mechanism of methylparaben adsorption from liquid phase. The equilibrium adsorption data are complemented with novel calorimetric data that allow calculation of the enthalpy change associated with the interactions between solvent-adsorbent, adsorbent-adsorbate and the contribution of the ester functional group (in the methylparaben structure) to the adsorbate⁻adsorbent interactions, in different pH and ionic strength conditions. It was determined that the interaction enthalpy of methylparaben-AC in water increases (absolute value) slightly with the basicity of the activated carbons, due to the formation of interactions with π- electrons and basic functional groups of ACs. The contribution of the ester group to the adsorbate-adsorbent interactions occurs only in the presence of phenol groups on AC by the formation of Brønsted⁻Lowry acid⁻base interactions.


Assuntos
Adsorção/efeitos dos fármacos , Parabenos/química , Termodinâmica , Poluentes Químicos da Água/química , Calorimetria , Carbono/química , Carvão Vegetal/química , Fenóis/química , Solventes/química , Água/química , Poluentes Químicos da Água/toxicidade
7.
Biofouling ; 34(2): 149-161, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29319345

RESUMO

Enterococcus faecalis is one of the most significant bacterial pathogens associated with the first-week mortality of chickens. Here, the surface properties of bacterial cells and the selected virulence factors of E. faecalis strains isolated from the hearts of clinically healthy broiler chickens were studied. Investigations were carried out on live and autoclaved cells. E. faecalis (ATCC 29212) was used as a reference strain. The bacterial cells revealed different haemolytic activities. Their surface free energy was dominated by the hydrophobic component. The cell walls of the bird isolates showed slightly weaker acidic characteristics than those of E. faecalis (ATCC 29212). Moreover, the bacterial cells from the chicken hearts showed higher electrophoretic mobility and surface electrical charge than the reference strain, and consequently demonstrated a low ability to form biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Galinhas/microbiologia , Enterococcus faecalis/isolamento & purificação , Coração/microbiologia , Animais , Enterococcus faecalis/metabolismo , Propriedades de Superfície , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
J Hazard Mater ; 470: 134153, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593658

RESUMO

This study systematically examines the roles of positive goethite on the retention and release of negative plastic nanoparticles (PSNPs) with different surface functional groups (Blank, -COOH, and -NH2). It provides the first evidence for the dual roles of goethite coatings on colloid transport; e.g., increased transport caused by surface morphology modification or decreased transport due to increased surface roughness and charge heterogeneity. Although previous work has shown that goethite-coated sand increases the retention of negative colloids, this work demonstrates that collector surface roughness can also reduce the retention of PSNPs due to increased interaction energy profiles. Nonmonotonic retention of all the different functionalized PSNPs was observed in goethite-coated rough sand, and the magnitude of variations was contingent on the PSNP functionalization, the solution ionic strength (IS), and the goethite coating. The release of PSNPs with IS decrease (phase I) and pH increase (phase II) varied significantly due to differences in energy barriers to detachment, e.g., release in phase I was inhibited in both goethite-coated sands, whereas release in phase II was enhanced in coated smooth sand but completely inhibited in rough sand. The findings of this study provide innovative insight into transport mechanisms for colloidal and colloid-associated contaminants.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39382803

RESUMO

In this study, the nanostructure, surface functional groups, and oxidation activity of soot particulate along the exhaust after-treatment system of a heavy-duty diesel engine fueled with waste cooking oil (WCO) biodiesel blends are investigated by TEM, XPS, and TGA respectively. The main findings are as follows: Along the exhaust after-treatment system, fringe length of primary particles of soot particulate emitted from tested heavy-duty diesel engine fueled with B0, B10, B20, and B100, i.e., 0%, 10%, 20%, and 100% ratio of WCO biodiesel blended into petroleum diesel in volume respectively increases, while fringe tortuosity and separation distance of primary particles reduces. The fringe length of B10, B20, and B100 is smaller, but the fringe tortuosity and separation distance are larger than that of B0. The O/C ratio of soot particulate tends to increase firstly and then decrease as the exhaust passes through DOC+cDPF and SCR+ASC in sequence. The O/C ratio of B10, B20, and B100 are also higher than that of B0. Soot particulate at cDPF outlet contains carborundum and biuret is found at SCR+ASC outlet. The sp3/sp2 ratio decreases along the exhaust after-treatment system, and B10, B20, and B100 tend to get higher sp3/sp2 ratio than B0. The C-OH and C=O content of soot particulate from different WCO biodiesel blends show generally similar trends along the exhaust after-treatment system, while the activation energy of soot particulate keeps increasing along the exhaust after-treatment system, but decreases with the increasing of blend ratio. These findings can provide useful references for optimizing the after-treatment system for WCO biodiesel blends.

10.
Environ Sci Pollut Res Int ; 30(42): 95810-95827, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558920

RESUMO

The adsorption process of inorganic arsenic (As) plays an important role in its mobility, bioavailability, and toxicity in the river environment. In this work, the adsorption of dissolved arsenite (As(III)) and arsenate (As(V)) by microplastics (MPs) pellets (polystyrene (PS) and low-density polyethylene (LDPE)), river sediment, and their mixture were investigated to assess the adsorption affinities and mechanism. The adsorption kinetics showed slow and mild rising zones from the natural behavior of the chemical adsorption. The results indicated that both MP characteristics and water properties played a significant role in the adsorption behavior of inorganic As species. The As adsorption equilibrium was modeled well by both Langmuir and Freundlich isotherms and partly fitted with the Sips model suggesting that both mono-layer and multi-layer adsorption occurred during adsorption The spontaneous adsorption process for both As(III) and As(V) was evidenced by the adsorption thermodynamics. The maximum adsorption capacities of As(III) and As(V) reached 143.3 mg/kg and 109.8 mg/kg on PS in deionized water, which were higher than those on sediment-PS mixture (119.3 mg/kg, 99.2 mg/kg), which were all lower than on sediment alone (263.3 mg/kg, 398.7 mg/kg). The Fourier transform infrared spectroscopy analysis identified that As(III) and As(V) interaction with sediment surface functional groups was the main adsorption mechanism from surface complexation and coordination. Two functional groups of polystyrene (-NH2, -OH) were mainly involved in the adsorption of inorganic As species on PS, while -COO- and -OH functional groups contributed to the adsorption mechanism of inorganic As species on LDPE. The findings provide valuable insight on the adsorption behavior and mechanisms of As(III) and As(V) in river systems in the presence of MPs particles. Both PS and LDPE were shown to be less effective than river sediment in the adsorption of As species from water, which provides a different perspective in understanding the scale of MPs impact in pollutant transport in the aquatic environment.


Assuntos
Arsênio , Arsenicais , Poluentes Químicos da Água , Poliestirenos/análise , Arsênio/análise , Polietileno , Plásticos/química , Rios , Adsorção , Poluentes Químicos da Água/análise , Microplásticos/química , Água/análise
11.
Sci Total Environ ; 903: 166585, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643702

RESUMO

Microplastics (MPs) contamination is becoming a significant environmental issue, as the widespread omnipresence of MPs can cause many adverse consequences for both ecological systems and humans. Contrary to what is commonly thought, the toxicity-inducing MPs are not the original pristine plastics; rather, they are completely transformed through various surface functional groups and aggressive biofilm formation on MPs via aging or weathering processes. Therefore, understanding the impacts of MPs' surface functional groups and biofilm formation on biogeochemical processes, such as environmental fate, transport, and toxicity, is crucial. In this review, we present a comprehensive summary of the distinctive impact that surface functional groups and biofilm formation of MPs have on their significant biogeochemical behavior in various environmental media, as well as their toxicity and biological effects. We place emphasis on the role of surface functional groups and biofilm formation as a means of influencing the biogeochemical processes of MPs. This includes their effects on pollutant fate and element cycling, which in turn impacts the aggregation, transport, and toxicity of MPs. Ultimately, future research studies and tactics are needed to improve our understanding of the biogeochemical processes that are influenced by the surface functional groups and biofilm formation of MPs.

12.
Environ Sci Pollut Res Int ; 30(25): 67499-67512, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37115440

RESUMO

Different species of microorganisms colonize the plastic surfaces and form biofilms depending on the aquatic environment. In the current investigation, characteristics of the plastic surface after exposure to three different aquatic environments based on visualization using scanning electron microscopy (SEM) and spectroscopic (diffuse reflectance (DR) and infrared (IR)) techniques were examined in laboratory bioreactors with time. For both materials, there were no differences observed in the ultraviolet (UV) region among the reactors and several peaks were observed with fluctuating intensities and without any trends. For light density polyethylene (LDPE), peaks indicating the presence of biofilm could be observed in the visible region for activated sludge bioreactor, and for polyethylene terephthalate (PET), freshwater algae biofilm was also visible. PET in freshwater bioreactor is the most densely populated sample both under the optical microscope and SEM. Based on the DR spectra, different visible peaks for LDPE and PET were observed but, in both cases, the visible region peaks (~ 450 and 670 nm) correspond to the peaks found in the water samples of the bioreactors. The difference on these surfaces could not be identified with IR but the fluctuations observed in the UV wavelength region were also detectable using indices obtained from the IR spectra such as keto, ester, and vinyl. For instance, the virgin PET sample shows higher values in all the indices than the virgin LDPE sample [(virgin LDPE: ester Index (I) = 0.051, keto I = 0.039, vinyl I = 0.067), (virgin PET: ester I = 3.5, keto I = 19, vinyl I = 0.18)]. This suggests that virgin PET surface is hydrophilic as expected. At the same time, for all the LDPE samples, all the indices demonstrated higher values (especially for R2) than the virgin LDPE. On the other hand, ester and keto indices for PET samples demonstrated lower values than virgin PET. In addition, DRS technique was able to identify the formation of the biofilm both on wet and dry samples. Both DRS and IR can describe changes in the hydrophobicity during the initial formation of biofilm but DRS can better describe the fluctuations of biofilm in the visible spectra region.


Assuntos
Polietilenotereftalatos , Polietileno , Polietileno/química , Plásticos , Análise Espectral , Biofilmes , Ésteres
13.
Chemosphere ; 311(Pt 1): 136968, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283429

RESUMO

The plastic concentration in terrestrial systems is orders of magnitude higher than that found in marine ecosystems, which has raised global concerns about their potential risk to agricultural sustainability. Previous research on the transport of nanoplastics in soil relied heavily on the qualitative prediction of the mean-field extended Derjaguin-Landau-Verwey-Overbeek theory (XDLVO), but direct and quantitative measurements of the interfacial forces between single nanoplastics and porous media are lacking. In this study, we conducted multiscale investigations ranging from column transport experiments to single particle measurements. The maximum effluent concentration (C/C0) of amino-modified nanoplastics (PS-NH2) was 0.94, whereas that of the carboxyl-modified nanoplastics (PS-COOH) was only 0.33, indicating PS-NH2 were more mobile than PS-COOH at different ionic strengths (1-50 mM) and pH values (5-9). This phenomenon was mainly attributed to the homogeneous aggregation of PS-COOH. In addition, the transport of PS-NH2 in the quartz sand column was inhibited with the increase of ionic strength and pH, and pH was the major factor governing their mobility. The transport of PS-COOH was inhibited with increasing ionic strength and decreasing pH. Hydrophilicity/hydrophobicity-mediated interactions and particle heterogeneity strongly interfered with interfacial forces, leading to the qualitative prediction of XDLVO, contrary to experimental observations. Through the combination of XDLVO and colloidal atomic force microscopy, accurate and quantitative interfacial forces can provide compelling insight into the fate of nanoparticles in the soil environment.


Assuntos
Ecossistema , Microplásticos , Porosidade , Quartzo , Areia
14.
Chem Asian J ; 18(11): e202300210, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036749

RESUMO

Hard carbon (HC) anode shows great potential due to its high capacity and excellent rate performance. However, state-of-the-art HC anode still suffers insufficient initial Coulomb efficiency (ICE) due to the abundant Li-trapping sites. Herein, we demonstrate a facile annealing engineering for HC anodes to improve the ICE and the mechanism is systematically studied. Accordingly, during the annealing process, metastable O- and N-containing functional groups are pyrolyzed, which cause the microstructure reconstruction of HC. Therefore, irreversible lithium ions adsorption is reduced significantly and the conversion of sp3 to sp2 C contributes to the localized graphitization of HC. Consequently, the optimized HC achieves ultra-high ICE of 90% from initial 61%. It is demonstrated that HC will adsorb H2 O and some organic species from environment gradually, causing conversion of some electrochemical stable functional groups to the irreversible Li-trapping sites. This work provides facile strategy and novel insight for high ICE HC anodes.

15.
ACS Appl Mater Interfaces ; 15(5): 7063-7073, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36694305

RESUMO

Cost-effective and high-performance H2S sensors are required for human health and environmental monitoring. 2D transition-metal carbides and nitrides (MXenes) are appealing candidates for gas sensing due to good conductivity and abundant surface functional groups but have been studied primarily for detecting NH3 and VOCs, with generally positive responses that are not highly selective to the target gases. Here, we report on a negative response of pristine Ti3C2Tx thin films for H2S gas sensing (in contrast to the other tested gases) and further optimization of the sensor performance using a composite of Ti3C2Tx flakes and conjugated polymers (poly[3,6-diamino-10-methylacridinium chloride-co-3,6-diaminoacridine-squaraine], PDS-Cl) with polar charged nitrogen. The composite, preserving the high selectivity of pristine Ti3C2Tx, exhibits an H2S sensing response of 2% at 5 ppm (a thirtyfold sensing enhancement) and a low limit of detection of 500 ppb. In addition, our density functional theory calculations indicate that the mixture of MXene surface functional groups needs to be taken into account to describe the sensing mechanism and the selectivity of the sensor in agreement with the experimental results. Thus, this report extends the application range of MXene-based composites to H2S sensors and deepens the understanding of their gas sensing mechanisms.

16.
Carbohydr Polym ; 276: 118789, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823799

RESUMO

Natural macromolecules have been used to adsorb pollutants including heavy metal ions and organic dyes due to low-cost, accessible, biodegradable, and eco-friendly advantages. Pectin, an important natural polymer, possesses abundant carboxyl and hydroxyl functional groups that can interact with the metal and organic cations via electrostatic interaction; as well as be modified by other chemicals for preparing hybrid and composite materials. The resultant materials have been employed to remove pollutants from aqueous solution; the importance of chemical composition was unlocked. Here, we reviewed contaminant removal by pectin, and pectin-based hybrid and composite materials, and highlighted the role of functional groups on pollutant removal. The removal of heavy metal ions was mainly due to surface coordination, while that of organic cations to electrostatic interactions of the functional groups. Moreover, the influence of initial contaminant concentration was critically discussed. The comprehensive review can provide valuable information on pectin and its application in contaminant removal.

17.
Chemosphere ; 302: 134901, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35568218

RESUMO

The development of a low-concentration methyl mercaptan adsorbing material for an efficient decontamination has become a hot research topic. In this study, carbonization activation was employed with starch and urea as carbon and nitrogen sources, respectively, to prepare a type of starch-based activated carbon. Subsequently, the product was used to adsorb low-concentration methyl mercaptan. Based on sorption experiments and molecular simulations, the underlying mechanism of the adsorption effect of the adsorbent's pore structure and surface oxygen- and nitrogen-containing functional groups on methyl mercaptan molecules were discussed. The results indicated that when the methyl mercaptan equilibrium concentration was 0.197 mg/L, the adsorption capacity of SUAC-16-2 for methyl mercaptan was 78.16 mg/g. Its adsorption performance was better than that of its previously reported counterparts. The well-developed microporous structure of SUAC-16-2 promoted the adsorption of methyl mercaptan. In addition, methyl mercaptan molecules could be broken down to produce CH3S- and H+ by the effect of the surface functional groups. Adjacent carbon atoms containing nitrogen and oxygen functional groups could better adsorb CH3S- and H+, and further strengthen the methyl mercaptan adsorption performance of activated carbon. The study could help to develop new technology for treatment of low concentration of methyl mercaptan in the air.


Assuntos
Carvão Vegetal , Amido , Adsorção , Carvão Vegetal/química , Nitrogênio/química , Oxigênio , Compostos de Sulfidrila/química
18.
Huan Jing Ke Xue ; 43(10): 4511-4521, 2022 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-36224137

RESUMO

As new pollutants, microplastics (MPs) can adsorb antibiotics in the water environment and migrate together as carriers. However, microplastics will age continuously in the environment, and their adsorption capacity and adsorption mechanism will change accordingly. With polyethylene (PE) and polystyrene (PS) as the target MPs, which were irradiated by ultraviolet (UV-254), the changes in the physical and chemical properties of MPs before and after aging, such as the color, surface morphology, and functional groups, were compared, and their effects on the adsorption of tetracycline (TC) as well as the related mechanism were explored. The results showed that the pseudo-second-order model could better fit the adsorption process, the adsorption equilibrium was reached within 24 hours, the adsorption capacity of aged MPs for TC was significantly higher than that of original MPs, and the adsorption capacity of PS was higher than that of PE. Langmuir and Freundlich isothermal adsorption equations could both describe the adsorption isothermal test data, and the adsorption of TC on MPs was a spontaneous and endothermic physical adsorption process, whereas aging had no obvious effect on the adsorption thermodynamic characteristics of MPs. With the increase in pH value, the adsorption capacity first increased and then decreased. The maximum adsorption capacity of MPs before and after aging was reached at pH=5. UV aging increased the specific surface area of MPs, generating oxygen-containing functional groups such as -C=O, -OH, and O=C=O, changing the physical and chemical properties of MPs, and thus changing the adsorption mechanism of MPs for TC. Compared with the original PE MPs, in addition to hydrophobic distribution, van der Waals forces, and electrostatic interactions, pore filling was also an important adsorption mechanism of aged PE. The main adsorption mechanisms of original PS microplastics were hydrophobic distribution, van der Waals forces, electrostatic interaction, and π-π interaction, whereas there was hydrogen bonding for aged PS.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Adsorção , Antibacterianos , Microplásticos , Oxigênio , Plásticos/química , Polietileno/química , Poliestirenos/química , Tetraciclina , Água , Poluentes Químicos da Água/análise
19.
Environ Sci Pollut Res Int ; 29(56): 84936-84945, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35789458

RESUMO

Fuel aromatic content (AC) is one of the main reasons for PM (particulate matter) emissions from ocean-going ships. The present study investigates the influence of AC on physicochemical characteristics of soot particles from marine auxiliary diesel engine. The TEM (transmission electron microscopy), Raman spectroscopy, FTIR (Fourier transform infrared spectroscopy), and TGA (thermalgravimetric analyzer) are employed to jointly characterize samples. The results reveal that soot particles from high-AC fuel have bigger dp (primary particle size), longer fringe length (La), and higher graphitization degree, all of which have significant impacts on chemical properties such as more VOF (volatile organic fraction), higher concentrations of aromatic C-H and C=C groups. These are mainly due to several aromatic rings decomposed from aromatic components could promote the growth of carbon layer, and incomplete pyrolysis productions are also present in soot particles. The relative amounts of aromatic C-H and C=C are well correlated with dp and La, respectively.


Assuntos
Fuligem , Emissões de Veículos , Emissões de Veículos/análise , Material Particulado/análise , Tamanho da Partícula , Carbono/química , Gasolina/análise
20.
Nanomaterials (Basel) ; 12(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35745383

RESUMO

Transition metal carbides and nitrides (MXenes) have attracted significant attention in photoelectric applications due to their highly tunable electronic and optical properties influenced by a flexible compositional or surface functional group regulation. Ti3C2Tx MXenes (-F, -OH, =O terminated) used in previous ultrafast photonic studies are usually synthesized via a generic hydrofluoric acid (HF) etching strategy, which may cause numerous defects and thus impedes the optoelectronic properties of Ti3C2Tx. In this contribution, inspired by a much higher conductivity and carrier mobility of Ti3C2Tx (-F, -OH, =O, -Cl terminated) prepared from a minimally intensive layer delamination method (MILD) etching strategy, we further optimized it with a liquid-phase exfoliation (LPE) method to synthesize pure Ti3C2Tx quantum dots (QDs) for ultrafast photonic. Compared to the other QDs saturable absorber (SA) devices performed at 1550 nm, our SA device exhibited a relatively low saturation intensity (1.983 GW/cm-2) and high modulation depth (11.6%), allowing for a more easily mode-locked pulse generation. A distinguished ultrashort pulse duration of 466 fs centered at the wavelength of 1566.57 nm with a fundamental frequency of 22.78 MHz was obtained in the communication band. Considering the SA based on such a Ti3C2Tx QDs tapered fiber is the first exploration of Er3+-doped fiber laser (EDFL), this work will open up a new avenue for applications in ultrafast photonics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa