RESUMO
Mesenchymal stem cells (MSCs) derived from fetal membranes (FMs) have the potential to exhibit immunosuppression, improve blood flow, and increase capillary density during transplantation. In the field of medicine, opening up new avenues for disease treatment. Chicken embryo chorioallantoic membrane (CAM), as an important component of avian species FM structure, has become a stable tissue engineering material in vivo angiogenesis, drug delivery, and toxicology studies. Although it has been confirmed that chorionic mesenchymal stem cells (Ch-MSCs) can be isolated from the outer chorionic layer of FM, little is known about the biological characteristics of MSCs derived from chorionic mesodermal matrix of chicken embryos. Therefore, we evaluated the characteristics of MSCs isolated from chorionic tissues of chicken embryos, including cell proliferation ability, stem cell surface antigen, genetic stability, and in vitro differentiation potential. Ch-MSCs exhibited a broad spindle shaped appearance and could stably maintain diploid karyotype proliferation to passage 15 in vitro. Spindle cells were positive for multifunctional markers of MSCs (CD29, CD44, CD73, CD90, CD105, CD166, OCT4, and NANOG), while hematopoietic cell surface marker CD34, panleukocyte marker CD45, and epithelial cell marker CK19 were negative. In addition, chicken Ch-MSC was induced to differentiate into four types of mesodermal cells in vitro, including osteoblasts, chondrocytes, adipocytes, and myoblasts. Therefore, the differentiation potential of chicken Ch-MSC in vitro may have great potential in tissue engineering. In conclusion, chicken Ch-MSCs may be an excellent model cell for stem cell regenerative medicine and chorionic tissue engineering.
Assuntos
Galinhas , Células-Tronco Mesenquimais , Animais , Embrião de Galinha , Membrana Corioalantoide , Diferenciação Celular/fisiologia , Células CultivadasRESUMO
PURPOSE: CD133, a cancer stem cells (CSC) marker, has been reported to be associated with treatment resistance and worse survival in triple-negative breast cancer (BC). However, the clinical relevance of CD133 expression in ER-positive/HER2-negative (ER + /HER2-) BC, the most abundant subtype, remains unknown. METHODS: The BC cohorts from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1904) and The Cancer Genome Atlas (TCGA, n = 1065) were used to obtain biological variables and gene expression data. RESULTS: Epithelial cells were the exclusive source of CD133 gene expression in a bulk BC. CD133-high ER + /HER2- BC was associated with CD24, NOTCH1, DLL1, and ALDH1A1 gene expressions, as well as with WNT/ß-Catenin, Hedgehog, and Notch signaling pathways, all characteristic for CSC. Consistent with a CSC phenotype, CD133-low BC was enriched with gene sets related to cell proliferation, such as G2M Checkpoint, MYC Targets V1, E2F Targets, and Ki67 gene expression. CD133-low BC was also linked with enrichment of genes related to DNA repair, such as BRCA1, E2F1, E2F4, CDK1/2. On the other hand, CD133-high tumors had proinflammatory microenvironment, higher activity of immune cells, and higher expression of genes related to inflammation and immune response. Finally, CD133-high tumors had better pathological complete response after neoadjuvant chemotherapy in GSE25066 cohort and better disease-free survival and overall survival in both TCGA and METABRIC cohorts. CONCLUSION: CD133-high ER + /HER2- BC was associated with CSC phenotype such as less cell proliferation and DNA repair, but also with enhanced inflammation, better response to neoadjuvant chemotherapy and better prognosis.
Assuntos
Antígeno AC133 , Biomarcadores Tumorais , Neoplasias da Mama , Reparo do DNA , Receptor ErbB-2 , Receptores de Estrogênio , Humanos , Antígeno AC133/metabolismo , Antígeno AC133/genética , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Prognóstico , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Perfilação da Expressão GênicaRESUMO
Progressive pulmonary fibrosis results from a dysfunctional tissue repair response and is characterized by fibroblast proliferation, activation, and invasion and extracellular matrix accumulation. Lung fibroblast heterogeneity is well recognized. With single-cell RNA sequencing, fibroblast subtypes have been reported by recent studies. However, the roles of fibroblast subtypes in effector functions in lung fibrosis are not well understood. In this study, we incorporated the recently published single-cell RNA-sequencing datasets on murine lung samples of fibrosis models and human lung samples of fibrotic diseases and analyzed fibroblast gene signatures. We identified and confirmed the novel fibroblast subtypes we reported recently across all samples of both mouse models and human lung fibrotic diseases, including idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease, and coronavirus disease (COVID-19). Furthermore, we identified specific cell surface proteins for each fibroblast subtype through differential gene expression analysis, which enabled us to isolate primary cells representing distinct fibroblast subtypes by flow cytometry sorting. We compared matrix production, including fibronectin, collagen, and hyaluronan, after profibrotic factor stimulation and assessed the invasive capacity of each fibroblast subtype. Our results suggest that in addition to myofibroblasts, lipofibroblasts and Ebf1+ (Ebf transcription factor 1+) fibroblasts are two important fibroblast subtypes that contribute to matrix deposition and also have enhanced invasive, proliferative, and contraction phenotypes. The histological locations of fibroblast subtypes are identified in healthy and fibrotic lungs by these cell surface proteins. This study provides new insights to inform approaches to targeting lung fibroblast subtypes to promote the development of therapeutics for lung fibrosis.
Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , COVID-19/metabolismo , Fibroblastos/metabolismo , Pulmão/patologia , Fibrose Pulmonar Idiopática/patologia , Fibrose , Proteínas de Membrana/metabolismoRESUMO
While choroidal neuronal control is known to be essential for retinal and ocular health, its mechanisms are not understood. Especially, the local choroidal innervation mediated by intrinsic choroidal neurons (ICN) remains enigmatic. Neuronal functionality depends on the synaptic neurotransmitters and neuroregulatory peptides involved as well as from membrane components presented on the cell surface. Since the neuronal surface molecular expression patterns in the choroid are currently unknown, we sought to determine the presence of various cluster-of-differentiation (CD) antigens in choroidal neuronal structures with a particular focus on ICN. Human choroids were prepared for immunohistochemistry and the pan-neuronal marker PGP9.5 was combined with CD15, CD24, CD29, CD34, CD46, CD49b, CD49e, CD56, CD58, CD59, CD71, CD81, CD90, CD146, CD147, CD151, CD165, CD171, CD184, CD200, CD271 and fluorescence- and confocal laser scanning-microscopy was used for documentation. The following antigens were found to be co-localized in PGP.9.5+ nerve fibers and ICN perikarya: CD29, CD34, CD56, CD81, CD90, CD146, CD147, CD151, CD171, CD200 and CD271, while all other CD markers where not detectable. Whereas CD24- and CD59- immunoreactivity was clearly absent in ICN perikarya, some neural processes of the choroidal stroma displayed CD24 and CD59 immunopositivity. While a multitude of the aforementioned CD-markers were indeed detected in nervous structures of the choroid, the CD24+ and CD59+ nerve fibers most likely have extrinsic origin from cranial ganglia since ICN cell bodies were found to lack both markers. These findings illustrate how the detailed analysis of CD molecules described here opens novel avenues for future functional studies on choroidal innervation and its control.
Assuntos
Corioide , Neurônios , Humanos , Antígeno CD146/metabolismo , Neurônios/metabolismo , Corioide/inervação , Fibras NervosasRESUMO
The agranulocytes in the Pacific oyster Crassostrea gigas are a group of haemocytes that are significantly different from semi-granulocytes and granulocytes on the morphology. Agranulocytes are the smallest haemocytes characterized by a spherical shape, the largest ratio of nucleus to cytoplasm, and no granules in the cytoplasm. The lack of unique cell surface markers impedes the isolation of agranulocytes from total haemocytes. Previous transcriptome sequencing analysis of three subpopulations of haemocytes revealed that a homologue of CD9 (designed as CgCD9) was highly expressed in agranulocytes of oyster C. gigas (data not shown). In the present study, CgCD9 was identified to share a similarity of 60% with other vertebrates CD9s, and it harbored a typical four transmembrane domain and a conserved Cys-Cys-Gly (CCG) motif. The mRNA transcript of CgCD9 was found to be highly expressed in agranulocytes, which was 6.63-fold (p < 0.05) and 3.68-fold (p < 0.05) of that in granulocytes and semi-granulocytes, respectively. A specific monoclonal antibody of CgCD9 (named 3D8) was successfully prepared by traditional hybridoma technology, and a single positive band at 25.2 kDa was detected in the haemocyte proteins by Western Blotting, indicating that this monoclonal antibody exhibited high specificity and sensitivity to CgCD9 protein. The ELISA positive value of 3D8 monoclonal antibody to recognize agranulocytes, semi-granulocytes and granulocytes was 17.35, 4.48 and 1.55, respectively, indicating that monoclonal antibody was specific to agranulocytes. Immunocytochemistry assay revealed that CgCD9 was specifically distributed on the membrane of agranulocytes. Using immunomagnetic beads coated with 3D8 monoclonal antibody, CgCD9+cells with a purity of 94.53 ± 5.60% were successfully isolated with a smaller diameter, a larger N:C ratio and no granules in cytoplasm, and could be primary culture in the modified L-15 medium in vitro. Collectively, these results suggested that CgCD9 was a specific cell surface marker for agranulocytes, which offered a tool for high-purity capture of agranulocytes from total haemocytes in C. gigas.
Assuntos
Crassostrea , Animais , Anticorpos Monoclonais , Granulócitos , Hemócitos , Leucócitos MononuclearesRESUMO
Stem cells and their derivatives are novel pharmaceutics that have the potential for use as tissue replacement therapies. However, the heterogeneous characteristics of stem cell cultures have hindered their biomedical applications. In theory and practice, when cell type-specific or stage-specific cell surface proteins are targeted by unique antibodies, they become highly efficient in detecting and isolating specific cell populations. There is a growing demand to identify reliable and actionable cell surface markers that facilitate purification of particular cell types at specific developmental stages for use in research and clinical applications. The identification of these markers as very important members of plasma membrane proteins, ion channels, transporters, and signaling molecules has directly benefited from proteomics and tools for proteomics-derived data analyses. Here, we review the methodologies that have played a role in the discovery of cell surface markers and introduce cutting edge single cell proteomics as an advanced tool. We also discuss currently available specific cell surface markers for stem cells and their lineages, with emphasis on the nervous system, heart, pancreas, and liver. The remaining gaps that pertain to the discovery of these markers and how single cell proteomics and identification of surface markers associated with the progenitor stages of certain terminally differentiated cells may pave the way for their use in regenerative medicine are also discussed.
Assuntos
Proteínas de Membrana/análise , Proteômica/métodos , Células-Tronco/citologia , Animais , Diferenciação Celular , Humanos , Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Transplante de Células-Tronco , Células-Tronco/químicaRESUMO
Human umbilical cord mesenchymal stem cells (hUC-MSCs) have considerable potential in cell therapy. Cryopreservation represents the gold standard in cell storage, but its effect on hUC-MSCs is still not well understood. The aim of this study was to investigate the effect of one year of cryopreservation and thawing on the biological characteristics of hUC-MSCs from the same donors. Fresh hUC-MSCs were cryopreserved in commercial freezing medium (serum-free CellBanker 2) at passage 2. After one year of cryopreservation, the hUC-MSCs were thawed and subcultured to passage 4. The comparison was performed in terms of followings: cell count, viability, morphology, proliferation capacity, differentiation potential and chromosomal stability. The total cell count and viability of hUC-MSCs before and after one year of cryopreservation were 1 × 107 and 96.34% and 0.943 × 107 and 93.81%, respectively. Cryopreserved and fresh hUC-MSCs displayed a similar cell doubling times, expressed the markers CD73, CD90, CD105 and were negative for the markers CD34, CD45, and HLA-DR. Karyotypes were found to be normal after one year of cryopreservation. The trilineage differentiation properties were maintained after cryopreservation. However, when compared to freshly isolated hUC-MSCs from the same donor, cryopreserved hUC-MSCs exhibited decreased expression of osteogenesis- and chondrogenesis-related genes including Runx2, Sox9, and Col1a1, and increased expression of adipogenesis-related genes. These results demonstrated that cryopreservation did not affect cell morphology, surface marker expression, cell viability, proliferative capacity, or chromosomal stability. However, the osteogenic and chondrogenic differentiation capacities of cryopreserved hUC-MSCs were slightly reduced compared with those of fresh cells from the same donor.
Assuntos
Células-Tronco Mesenquimais , Humanos , Condrogênese , Criopreservação/métodos , Cordão Umbilical , Instabilidade CromossômicaRESUMO
Objective: To investigate how omentin-1 impacts colorectal cancer stem cell surface markers and the expression levels of tumour-suppressive micro ribonucleic acid in a colorectal cancer-associated high-glucose environment. METHODS: The study was conducted in the First Affiliated Hospital of Anhui Medical Universityï¼Anhui, Chinaï¼from April 2018 to January 2019 and comprised cluster of differentiation133 and colorectal cancer stem cells from the SW480 cell lineï¼the human colon adenocarcinoma cell lineï¼ obtained through immunomagnetic beads-based cell isolation. The colon cancer stem cells were divided into 6 groups: Z0 (control), Z1 (1ug/mL omentin-1), Z2 (2ug/mL omentin-1), G0 (5.0g/mL glucose), G1 (1ug/mL omentin-1 and 5.0g/mL glucose), and G2 (2ug/mL omentin-1 and 5.0 g/mL glucose). After 24 hours of intervention, quantitative polymerase chain reaction and western blot test were used for the detection of messenger ribonucleic acid and protein levels of stem cell surface markers. The colorectal cancer stem cells were divided into three groups: the control group, omentin group 1 (1ug/mL omentin-1) and omentin group 2 (2ug/mL omentin-1). After 24 hours of intervention, the expression of tumour suppressor micro ribonucleic acid was measured using quantitative polymerase chain reaction. Data was analysed using SPSS 23. RESULTS: Compared to the Z0 group, cluster of differentiation133 messenger ribonucleic acid expression reduced sharply in Z1 group (p<0.05), while Z2 group saw a marked increase in the expression (p<0.05). With respect to tumour-suppressive micro ribonucleic acid expression, micro ribonucleic acid 126, 145, 34a and 342-5P in omentin group 2 exhibited an expression level significantly higher than those in the control group and the omentin group 1 (p<0.05). Conclusion: High glucose levels were found to upregulate the expression of colorectal cancer stem cell surface markers cluster of differentiation133 messenger ribonucleic acid and protein. Also, omentin-1 was found to be associated with the downregulation of cluster of differentiation133 messenger ribonucleic acid and protein expression and the upregulation of cluster of differentiation 44 messenger ribonucleic acid expression in a high-glucose environment. Finally, omentin-1 was found to have the ability to promote the expression of relevant tumour-suppressive micro ribonucleic acids 126, 14, 34a and 342-5P.
Assuntos
Neoplasias do Colo , MicroRNAs , Biomarcadores , Neoplasias do Colo/genética , Glucose/farmacologia , Humanos , MicroRNAs/genética , Células-Tronco NeoplásicasRESUMO
Human pluripotent stem cells (hPSC) self-renew and represent a potentially unlimited source for the production of cardiomyocytes (CMs) suitable for studies of human cardiac development, drug discovery, cardiotoxicity testing, and disease modelling and for cell-based therapies. However, most cardiac differentiation protocols yield mixed cultures of atrial-, ventricular-, and pacemaker-like cells at various stages of development, as well as non-CMs. The proportions and maturation states of these cell types result from disparities among differentiation protocols and time of cultivation, as well as hPSC reprogramming inconsistencies and genetic background variations. The reproducible use of hPSC-CMs for research and therapy is therefore limited by issues of cell population heterogeneity and functional states of maturation. A validated method that overcomes issues of cell heterogeneity is immunophenotyping coupled with live cell sorting, an approach that relies on accessible surface markers restricted to the desired cell type(s). Here we review current progress in unravelling heterogeneity in hPSC-cardiac cultures and in the identification of surface markers suitable for defining cardiac identity, subtype specificity, and maturation states.
Assuntos
Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/fisiologia , Humanos , Imunofenotipagem/métodos , FenótipoRESUMO
Osteoblasts are primary bone-making cells originating from mesenchymal stem cells (MSCs) in the bone marrow. The differentiation of MSCs to mature osteoblasts involves an intermediate stage called preosteoblasts, but the details of this process remain unclear. This study focused on the intracellular density of immature osteoblast lineage cells and hypothesized that the density might vary during differentiation and might be associated with the differentiation stages of osteoblast lineage cells. This study aimed to clarify the relationship between intracellular density and differentiation stages using density gradient centrifugation. Primary murine bone marrow stromal cell cultures were prepared in an osteogenic induction medium, and cells were separated into three fractions (low, intermediate, and high-density). The high-density fraction showed elevated expression of osteoblast differentiation markers (Sp7, Col1a1, Spp1, and Bglap) and low expression of MSC surface markers (Sca-1, CD73, CD105, and CD106). In contrast, the low-density fraction showed a high expression of MSC surface markers. These results indicated that intracellular density increased during differentiation from preosteoblasts to committed osteoblasts. Intracellular density may be a novel indicator for osteoblast differentiation stages. Density gradient centrifugation is a novel technique to study the process by which preosteoblasts transform into bone-forming cells.
Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Regulação da Expressão Gênica , Osteoblastos/metabolismo , Osteogênese , Animais , Camundongos , Osteoblastos/citologiaRESUMO
Recent evidence suggests that comorbidities between neuropsychiatric conditions and metabolic syndrome may precede and even exacerbate long-term side-effects of psychiatric medication, such as a higher risk of type 2 diabetes and cardiovascular disease, which result in increased mortality. In the present study we compare the expression of key metabolic proteins, including the insulin receptor (CD220), glucose transporter 1 (GLUT1) and fatty acid translocase (CD36), on peripheral blood mononuclear cell subtypes from patients across the neuropsychiatric spectrum, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions (n = 25/condition), relative to typical controls (n = 100). This revealed alterations in the expression of these proteins that were specific to schizophrenia. Further characterization of metabolic alterations in an extended cohort of first-onset antipsychotic drug-naïve schizophrenia patients (n = 58) and controls (n = 63) revealed that the relationship between insulin receptor expression in monocytes and physiological insulin sensitivity was disrupted in schizophrenia and that altered expression of the insulin receptor was associated with whole genome polygenic risk scores for schizophrenia. Finally, longitudinal follow-up of the schizophrenia patients over the course of antipsychotic drug treatment revealed that peripheral metabolic markers predicted changes in psychopathology and the principal side effect of weight gain at clinically relevant time points. These findings suggest that peripheral blood cells can provide an accessible surrogate model for metabolic alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic complications following antipsychotic therapy.
Assuntos
Antipsicóticos , Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Esquizofrenia , Antipsicóticos/efeitos adversos , Humanos , Leucócitos Mononucleares , Esquizofrenia/tratamento farmacológicoRESUMO
Human periodontal ligament stem cells (hPDLSCs) are a promising source in regenerative medicine. Due to the complexity and heterogeneity of hPDLSCs, it is critical to isolate homogeneous hPDLSCs with high regenerative potential. In this study, p75 neurotrophin receptor (p75NTR) was used to isolate p75NTR+ and p75NTR- hPDLSCs by fluorescence-activated cell sorting. Differences in osteogenic differentiation among p75NTR+ , p75NTR- and unsorted hPDLSCs were observed. Differential gene expression profiles between p75NTR+ and p75NTR- hPDLSCs were analysed by RNA sequencing. α1 Integrin (ITGA1) small interfering RNA and ITGA1-overexpressing adenovirus were used to transfect p75NTR+ and p75NTR- hPDLSCs. The results showed that p75NTR+ hPDLSCs demonstrated superior osteogenic capacity than p75NTR- and unsorted hPDLSCs. Differentially expressed genes between p75NTR+ and p75NTR- hPDLSCs were highly involved in the extracellular matrix-receptor interaction signalling pathway, and p75NTR+ hPDLSCs expressed higher ITGA1 levels than p75NTR- hPDLSCs. ITGA1 silencing inhibited the osteogenic differentiation of p75NTR+ hPDLSCs, while ITGA1 overexpression enhanced the osteogenic differentiation of p75NTR- hPDLSCs. These findings indicate that p75NTR optimizes the osteogenic potential of hPDLSCs by up-regulating ITGA1 expression, suggesting that p75NTR can be used as a novel cell surface marker to identify and purify hPDLSCs to promote their applications in regenerative medicine.
Assuntos
Integrina alfa1/metabolismo , Osteogênese , Ligamento Periodontal/citologia , Receptor de Fator de Crescimento Neural/metabolismo , Células-Tronco/metabolismo , Regulação para Cima , Adolescente , Adulto , Biomarcadores/metabolismo , Diferenciação Celular/genética , Inativação Gênica , Humanos , Adulto JovemRESUMO
All endothelial cells have the common characteristic that they line the vessels of the blood circulatory system. However, endothelial cells display a large degree of heterogeneity in the function of their location in the vascular tree. In this article, we have summarized the expression patterns of a number of well-accepted endothelial surface markers present in normal microvascular endothelial cells, arterial and venous endothelial cells, lymphatic endothelial cells, tumor endothelial cells, and endothelial precursor cells.
Assuntos
Antígenos de Diferenciação/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Animais , HumanosRESUMO
Lactobacillus species are typical members of gut microflora that immunomodulatory effects and can regulate a variety of immune cells, such as dendritic cells (DCs). Notably, DCs possess the unique ability to initiate primary immune responses. Notably, DCs possess the unique ability to initiate primary immune responses. In this study, we investigated the effects of Lactobacillus johnsonii (L. johnsonii) on the maturation and activation of chicken bone marrow-derived dendritic cells (chBM-DCs). The chBM-DCs generated from chicken bone marrow monocytes were stimulated using lethally irradiated L. johnsonii. L. johnsonii-stimulated chBM-DCs upregulated the expression of major histocompatibility complex class II (MHC-II), CD40, and CD86, decreased phagocytosis, and increased the ability to induce the proliferation of allogeneic T cells, which displayed a mature phenotype and function. Upon maturation with L. johnsonii, the expression of Th1-type cytokines [interleukin (IL)-12, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α)], a Th2-type cytokine (IL-10), pro-inflammatory cytokines (IL-1ß and IL-6), and chemokines (CXCLi1 and CXCLi2) greatly increased; however, a high expression of IL-10 was only observed at mid-late time points for chBM-DCs stimulated with high doses of L. johnsonii. Moreover, L. johnsonii upregulated the mRNA levels of TLR2 and TLR5. These results reveal that L. johnsonii plays a potentially important role in modulating the immunological functions of chBM-DCs, suggesting that it influences and mediates immune responses in vitro.
Assuntos
Proteínas Aviárias/imunologia , Células da Medula Óssea/imunologia , Quimiocinas/imunologia , Galinhas/imunologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Lactobacillus johnsonii/imunologia , Animais , Receptor 2 Toll-Like/imunologia , Receptor 5 Toll-Like/imunologiaRESUMO
Cancer stem cells (CSCs) are tumor cells with initiating ability, self-renewal potential, and intrinsic resistance to conventional therapeutics. Efficient isolation and characterization of CSCs pave the way for more comprehensive knowledge about tumorigenesis, heterogeneity, and chemoresistance. Also a better understanding of CSCs will lead to novel era of both basic and clinical cancer research, reclassiï¬cation of human tumors, and development of innovative therapeutic strategies. Finding novel diagnostic and effective therapeutic strategies also enhance the success of treatment in cancer patients. There are various methods based on the characteristics of the CSCs to detect and isolate these cells, some of which have recently developed. This review summarized current techniques for effective isolation and characterization of CSCs with a focus on advantages and limitations of each method with clinical applications.
RESUMO
Granulocytes are known as the main immunocompetent hemocytes that play important roles in the immune defense of oyster Crassostrea gigas. In the present study, an alcohol acyltransferase (designed as CgAATase) with specific expression pattern was identified from oyster C. gigas, and it could be employed as a potential marker for the isolation of oyster granulocytes. The open reading frame (ORF) of CgAATase was of 1431 bp, encoding a peptide of 476 amino acids with a typically conserved AATase domain. The mRNA transcripts of CgAATase were highest expressed in hemocytes, lower expressed in hepatopancreas, mantle, gonad, gill, ganglion, adductor muscle, and labial palp. The mRNA expression level of CgAATase in hemocytes was significantly up-regulated at 3-12â¯h and reached the highest level (27.40-fold compared to control group, pâ¯<â¯0.05) at 6â¯h after Vibrio splendidus stimulation. The total hemocytes were sorted as granulocytes, semi-granulocytes and agranulocytes by Percoll® density gradient centrifugation. CgAATase transcripts were dominantly observed in granulocytes, which was 8.26-fold (pâ¯<â¯0.05) and 2.80-fold (pâ¯<â¯0.05) of that in agranulocytes and semi-granulocytes, respectively. The monoclonal antibody against CgAATase was produced and employed for the isolation of granulocytes with the immunomagnetic bead. CgAATase protein was mainly detected on the cytomembrane of granulocytes. About 85.7⯱â¯4.60% of the granulocytes were positive for CgAATase and they could be successfully separated by flow cytometry with immunomagnetic bead coated with anti-CgAATase monoclonal antibody, and 97.7⯱â¯1.01% of the rest hemocytes (agranulocytes and semi-granulocytes) were negative for CgAATase. The isolated primary granulocytes could maintain cell activity for more than one week in vitro culture that exhibited numerous filopodia. These results collectively suggested that CgAATase was a potential marker of oyster granulocytes, and the granulocytes could be effectively isolated from total circulating hemocytes by immunomagnetic bead coated with the anti-CgAATase monoclonal antibody.
Assuntos
Crassostrea/imunologia , Granulócitos/imunologia , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Crassostrea/citologia , Crassostrea/enzimologia , Citometria de Fluxo/métodos , Granulócitos/citologia , Granulócitos/enzimologia , Hemócitos/citologia , Separação Imunomagnética/métodos , Proteínas/genética , Vibrio/imunologiaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, and thus better understanding of its molecular pathology is crucial for us to devise more effective treatment of this deadly disease. As cancer cell line remains a convenient starting point for discovery and proof-of-concept studies, here we report the miRNA expression characteristics of two cell lines, MIA PaCa-2 and PANC-1, and discovered three miRNAs (miR-7-5p, let-7d, and miR-135b-5p) that are involved in cancer stem cells (CSCs) suppression. After transfection of each miRNA's mimic into PANC-1 cells which exhibits higher stemness feature than MIA-PaCa-2 cells, partial reduction of CSC surface markers and inhibition of tumor sphere formation were observed. These results enlighten us to consider miRNAs as potential therapeutic agents for pancreatic cancer patients via specific and effective inhibition of CSCs.
Assuntos
Carcinoma Ductal Pancreático/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Neoplasias Pancreáticas/patologia , Esferoides Celulares/metabolismoRESUMO
Stage-specific embryonic antigen 1 (SSEA-1) is an antigenic epitope (also called CD15 antigen) defined as a Lewis X carbohydrate structure and known to be expressed in murine embryonal carcinoma cells, mouse embryonic stem cells (ESCs), and murine and human germ cells, but not human ESCs/induced pluripotent stem cells (iPSCs). It is produced by α1,3-fucosyltransferase IX gene (FUT9), and F9 ECCs having a disrupted FUT9 locus by gene targeting are reported to exhibit loss of SSEA-1 expression on their cell surface. Mouse ESCs are pluripotent cells and therefore known as "naïve stem cells (NSCs)." In contrast, human ESCs/iPSCs are thought to be epiblast stem cells (EpiSCs) that are slightly more differentiated than NSCs. Recently, it has been demonstrated that treatment of EpiSCs with several reprograming-related drugs can convert EpiSCs to cells similar to NSCs, which led us to speculate that SSEA-1 may have been expressed in these NSC-like EpiSCs. Immunocytochemical staining of these cells with anti-SSEA-1 revealed increased expression of this epitope. RT-PCR analysis also confirmed increased expression of FUT9 transcripts as well as other stemness-related transcripts such as REX-1 (ZFP42). These results suggest that SSEA-1 can be an excellent marker for human NSCs.
Assuntos
Membrana Celular/metabolismo , Polpa Dentária/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Antígenos CD15/metabolismo , Dente Decíduo/citologia , Animais , Ensaio de Unidades Formadoras de Colônias , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos NusRESUMO
Two bifunctional diaminoterephthalate (DAT) fluorescence dyes were prepared in a three-step sequence including one deprotection reaction. One functional unit is α-lipoic acid (ALA) for binding the dye to gold surfaces. It was introduced to the DAT scaffold by an amidation reaction. The other functional unit is a para-(trifluoromethyl)benzyl group for facile detection of the surface-bound material by X-ray photoelectron spectroscopy (XPS). This residue was introduced by reductive amination of the DAT scaffold with the respective benzaldehyde derivative. In one compound (60% yield over three steps) the ALA unit is directly bound to the DAT as a relatively electron-withdrawing amide. In solution (CH2Cl2), this material shows strong fluorescence (quantum yield 57% with emission at 495 nm, absorption maximum at 420 nm). The other compound (57% yield over three steps) possesses a propylene spacer between the ALA and the DAT units for electronic decoupling, thus, bathochromic shifts are observed (absorption at 514 nm, emission at 566 nm). The quantum yield is, however, lower (4%). Self-assembled monolayers on a gold surface of both compounds were prepared and characterized by high-resolution XPS of the C 1s, O 1s, S 2p, N 1s and F 1s emissions. The high signal-to-noise ratios of the F 1s peaks indicated that trifluoromethylation is an excellent tool for the detection of surface-bound materials by XPS.
RESUMO
Fibroblasts play an important role in lung homeostasis and disease. In lung fibrosis, fibroblasts adopt a proliferative and migratory phenotype, with increased expression of α-smooth muscle actin (αSMA) and enhanced secretion of extracellular matrix components. Comprehensive profiling of fibroblast heterogeneity is limited because of a lack of specific cell-surface markers. We have previously profiled the surface proteome of primary human lung fibroblasts. Here, we sought to define and quantify a panel of cluster of differentiation (CD) markers in primary human lung fibroblasts and idiopathic pulmonary fibrosis (IPF) lung tissue, using immunofluorescence and FACS analysis. Fibroblast function was assessed by analysis of replicative senescence. We observed the presence of distinct fibroblast phenotypes in vivo, characterized by various combinations of Desmin, αSMA, CD36, or CD97 expression. Most markers demonstrated stable expression over passages in vitro, but significant changes were observed for CD36, CD54, CD82, CD106, and CD140a. Replicative senescence of fibroblasts was observed from passage 10 onward. CD36- and CD97-positive but αSMA-negative cells were present in remodeled areas of IPF lungs. Transforming growth factor (TGF)-ß treatment induced αSMA and collagen I expression but repressed CD36 and CD97 expression. We identified a panel of stable surface markers in human lung fibroblasts, applicable for positive-cell isolation directly from lung tissue. TGF-ß exposure represses CD36 and CD97 expression, despite increasing αSMA expression; we therefore identified complex surface protein changes during fibroblast-myofibroblast activation. Coexistence of quiescence and activated fibroblast subtypes in the IPF lung suggests dynamic remodeling of fibroblast activation upon subtle changes to growth factor exposure in local microenvironmental niches.