Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Math Med Biol ; 32(1): 79-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24114068

RESUMO

We describe two novel Markov chain Monte Carlo approaches to computing estimates of parameters concerned with healthcare-associated infections. The first approach frames the discrete time, patient level, hospital transmission model as a Bayesian network, and exploits this framework to improve greatly on the computational efficiency of estimation compared with existing programs. The second approach is in continuous time and shares the same computational advantages. Both methods have been implemented in programs that are available from the authors. We use these programs to show that time discretization can lead to statistical bias in the underestimation of the rate of transmission of pathogens. We show that the continuous implementation has similar running time to the discrete implementation, has better Markov chain mixing properties, and eliminates the potential statistical bias. We, therefore, recommend its use when continuous-time data are available.


Assuntos
Algoritmos , Infecção Hospitalar/transmissão , Modelos Biológicos , Teorema de Bayes , Simulação por Computador , Hospitais de Veteranos , Humanos , Unidades de Terapia Intensiva , Cadeias de Markov , Conceitos Matemáticos , Staphylococcus aureus Resistente à Meticilina , Modelos Estatísticos , Método de Monte Carlo , Software , Infecções Estafilocócicas/transmissão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa