Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730787

RESUMO

Sustainable composite materials, including carnauba wax, can store energy in the form of latent heat, and containing the wax may allow form-stable melting and crystallization cycles to be performed. Here, it is shown that carnauba wax in the molten state and the abundant nanoclay montmorillonite form stable composites with mass ratios of 50-70% (w/w). Transmission electron microscopy analysis reveals the inhomogeneous distribution of the nanoclay in the wax matrix. Analyses with infrared and multinuclear solid-state nuclear magnetic resonance (NMR) spectroscopy prove the chemical inertness of the composite materials during preparation. No new phases are formed according to studies with powder X-ray diffraction. The addition of the nanoclay increases the thermal conductivity and prevents the leakage of the phase change material, as well as reducing the time intervals of the cycle of accumulation and the return of heat. The latent heat increases in the row 69.5 ± 3.7 J/g, 95.0 ± 2.5 J/g, and 107.9 ± 1.7 J/g for the composite materials containing resp. 50%, 60% and 70% carnauba wax. Analysis of temperature-dependent 13C cross-polarization solid-state NMR spectra reveal the enhanced amorphization and altered molecular dynamics of the carnauba wax constituents in the composite materials. The amorphization also defines changes in the thermal transport mechanism in the composites compared to pure wax at elevated temperatures.

2.
Chemosphere ; 364: 143166, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39209034

RESUMO

Recycling of waste plastics and agro-industrial waste for the development of sustainable polymeric composites is recognized as a viable approach to overcome the detrimental environmental effects of plastics waste. Despite of immense potential of sustainable composites in the Circular Economy (CE), its implementation is still insignificant due to the lack of an effective material selection approach. The existence of several influencing aspects in the process of material selection considers it a multi-criteria decision making (MCDM) problem. In the present work, an Aggregation Operator (AO) based integrated Stepwise Weight Assessment Ratio Analysis (SWARA) and Multi-attributive Border Approximation Area Comparison (MABAC) has been proposed to deal with the issues of material selection for polymer based sustainable composites. Moreover, q-rung orthopair fuzzy numbers (q-ROPFNs) have been implemented to tackle the uncertainty in the information. The effectiveness of the proposed approach has been confirmed by different comparative and sensitivity investigations. The developed composites have shown excellent properties whereas the responses of the materials vary invariably with compositions. The proposed method has identified the amalgamation of 10 wt percentage of rice husk ash and 10 wt percentage of sand with 80 wt percentage of high-density polyethylene (HDPE) as an appropriate material for the development of sustainable floor tiles as the composites resulted to optimum mechanical performances and minimum abrasive wear. The proposed model gives reliable and robust results and is sensitive to the criteria weights and mathematical parameters. The outcome of the research has exposed that the suggested mathematical approach can be effectively applied for material selection of sustainable polymeric composites for different applications.


Assuntos
Materiais de Construção , Plásticos , Reciclagem , Reciclagem/métodos , Materiais de Construção/análise , Lógica Fuzzy
3.
Polymers (Basel) ; 16(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931999

RESUMO

Thermosetting polymers and composites are a class of high-performance materials with significant industrial applications. However, the widespread use of thermosets and their composites generates large quantities of waste and leads to serious economic and environmental problems, there is a critical need in the elaboration of sustainable composite materials. Here, we propose a method to prepare sustainable carbon fiber reinforced composites with different degrees of greenness by blending environmentally friendly EIA with DGEBA in different ratios, and the properties compared with a well-known commercial petroleum-based epoxy resin. The prepared carbon fiber reinforced polymer (CFRP) composites with different degrees of greenness had excellent dimensional stability under extreme hygrothermal aging. After aging, the green CFRP composite T700/EIA-30 has higher strength and performance retention than that of petroleum-based CFRP composites. The higher hygrothermal stability and durability of EIA-based epoxy resins as compared with BPA-based epoxy resins demonstrated significant evidence to design and develop a novel bio-based epoxy resin with high performance to substitute the petroleum-based epoxy resin.

4.
Environ Sci Pollut Res Int ; 31(38): 50493-50512, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096460

RESUMO

Leveraging date palm spikelets (DPS) as a precursor, this study developed a DPS-derived composite (ZnO@DPS-AC) for water treatment, focusing on methyl orange (MO) removal. The composite was synthesized through ZnCl2 activation and pyrolysis at 600 °C. Comprehensive characterization was conducted using TGA, FTIR, XRD, SEM/EDS, and pHPZC. Characterization revealed a highly carbonaceous material (> 74% carbon) with significant porosity and surface functional groups. ZnO@DPS-AC demonstrated rapid MO removal, achieving over 45% reduction within 10 min and up to 99% efficiency under optimized conditions. The Langmuir model-calculated maximum adsorption capacity reached 226.81 mg/g at 20 °C. Adsorption mechanisms involved hydrogen bonding, π-π interactions, and pore filling. The composite showed effectiveness in treating real wastewater and removing other pollutants. This study highlights the potential of agricultural waste valorization in developing efficient, sustainable adsorbents for water remediation, contributing to circular bioeconomy principles.


Assuntos
Compostos Azo , Carvão Vegetal , Phoeniceae , Termodinâmica , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cinética , Compostos Azo/química , Carvão Vegetal/química , Águas Residuárias/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Phoeniceae/química
5.
ACS Nano ; 17(21): 20962-20967, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37871004

RESUMO

Development of biodegradable plastic materials is of primary importance in view of acute environmental and health problems associated with the accumulation of plastic waste. We fabricated a biodegradable composite material based on hydroxyethyl cellulose polymer and tyrosine nanocrystals, which demonstrates enhanced strength and ductility (typically mutually excluding properties), superior to most biodegradable plastics. This emergent behavior results from an assembly pattern that leads to a uniform nanoscale morphology and strong interactions between the components. Water-resistant biodegradable composites encapsulated with hydrophobic polycaprolactone as a protection layer were also fabricated. Self-assembly of robust sustainable plastics with emergent properties by using readily available building blocks provides a valuable toolbox for creating sustainable materials.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36930307

RESUMO

The increasing demand for shelters, depleting natural resources, concern for plastic waste, and rising awareness for the environment have attracted the contemporary world towards the recycling of waste plastics for the development of an alternative and sustainable building construction material. The plastics suffer due to their poor strength which can be successfully overcome by the reinforcement of natural fibers. The work aimed to develop and investigate the properties of natural fiber-reinforced composites for structural applications such as floor tiles and pavements. The composites were developed by utilizing three different types of waste plastics, namely, low-density polyethylene, high-density polyethylene, and polypropylene with the reinforcement of coconut (cocos nucifera) and Tossa jute (corchorus olitorius) fibers. The evaluation of the density, water absorption, compressive strength, and flexural strength was performed. Moreover, three-body abrasive wear performance was investigated under the conditions of different loads and sliding speeds. The wear mechanism was explored by the morphological analyses of the fractured and worn-out surfaces. The composite HDPE80C20 showed a maximum density of 1.603 g/cm3 and minimum percentage of water absorption to 0.2022. Moreover, the composite attained a maximum compressive and flexural strength of 40.10 and 10.04 (MPa), respectively. The ranges for abrasive wear were found to be 0.002375-0.20015 (cm3) and 0.01987-0.39593 (cm3) under the considered conditions of loads and sliding speeds, respectively. The comparative analysis of the properties suggested the reinforcement of 20 wt% of jute fiber with 80 wt% of high-density polyethylene for the development of composites for structural applications. The study highlighted the potential of waste plastics and natural fibers as value-added products for building construction with relevancy from socio-eco and environmental points of view.

7.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571099

RESUMO

This research focuses on exploring the potential of mycelium as a sustainable alternative to wood or solid foam in pultruded glass fiber-reinforced plastic (GFRP) sandwich profiles. The study evaluates the performance and the environmental sustainability potential of this composite by mechanical tests and life cycle assessment (LCA). Analysis and comparison of pultruded sandwich profiles with mycelium, polyurethane (PUR) foam and chipboard demonstrate that mycelium is competitive in terms of its performance and environmental impact. The LCA indicates that 88% of greenhouse gas emissions are attributed to mycelium production, with the heat pressing (laboratory scale) being the main culprit. When pultruded profiles with mycelium cores of densities 350 and 550 kg/m³ are produced using an oil-heated lab press, a global warming potential (GWP) of 5.74 and 9.10 kg CO2-eq. per functional unit was calculated, respectively. When using an electrically heated press, the GWP decreases to 1.50 and 1.78 kg CO2-eq. Compared to PUR foam, a reduction of 23% in GWP is possible. In order to leverage this potential, the material performance and the reproducibility of the properties must be further increased. Additionally, an adjustment of the manufacturing process with in situ mycelium deactivation during pultrusion could further reduce the energy consumption.

8.
Int J Biol Macromol ; 222(Pt B): 2683-2696, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220411

RESUMO

Sawdust is a by-product of wood-related industries with striking features for pollutant uptake. For the first time in the current study, sustainable magnetic alginate composite beads containing citric acid-modified sawdust (CA-sawdust) as a bio-waste and Fe3O4 nanoparticles were designed. This novel eco-friendly composite (Alginate/CA-sawdust/Fe3O4 beads) was successfully applied to remove cationic malachite green (MG). Easy separation under a magnetic field and reusability could be mentioned as two significant properties of this bio-sorbent. The removal percentage of MG using alginate/CA-sawdust/Fe3O4 beads was calculated to be 90-95 %. This process was well-described with Langmuir isotherm and nonlinear pseudo-first-order kinetic models. Moreover, both film and intraparticle diffusion models were found to be probable removal mechanisms.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Alginatos , Água , Madeira/química , Adsorção , Ácido Cítrico , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
9.
Polymers (Basel) ; 13(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652849

RESUMO

In recent years, the use of plant fibres in Textile-Reinforced Mortar (TRM) composites emerged as a valuable solution to increase their sustainability. Several studies carried out to mechanically characterize the so-called Natural TRMs, although showing promising results, also emphasised some drawbacks due to a severe deformability of the system and to durability issues. This study aims at improving the mechanical behaviour of Natural TRMs including impregnated flax textile (Flax TRMs) by the addition of short curauá fibres within the matrix. Flax TRM specimens were tested in tension to assess the influence of the fibre-reinforced mortar on the composite response. The crack pattern developed during the test was investigated via Digital Image Correlation analysis and by means of an analytical simplified model proposed by the authors. The addition of curauá fibres resulted in a denser crack pattern and in a significant decrease of the mean crack width (around 20%). The overall tensile response of Flax TRMs including curauá fibres resulted closer to the ideal three-linear behaviour of strain-hardening TRM composites with respect to the conventional Flax TRMs by also presenting an increase of dissipated energy of around 45%. This study paves the way for further analysis aimed at enhancing the mechanical performance of Natural TRMs adopting sustainable improvement techniques.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa