Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38793934

RESUMO

Self-assembly formation is a key research topic for realizing practical applications in swarm robotics. Due to its inherent complexity, designing high-performance self-assembly formation strategies and proposing corresponding macroscopic models remain formidable challenges and present an open research frontier. Taking inspiration from crystallization, this paper introduces a distributed self-assembly formation strategy by defining free, moving, growing, and solid states for robots. Robots in these states can spontaneously organize into user-specified two-dimensional shape formations with lattice structures through local interactions and communications. To address the challenges posed by complex spatial structures in modeling a macroscopic model, this work introduces the structural features estimation method. Subsequently, a corresponding non-spatial macroscopic model is developed to predict and analyze the self-assembly behavior, employing the proposed estimation method and a stock and flow diagram. Real-robot experiments and simulations validate the flexibility, scalability, and high efficiency of the proposed self-assembly formation strategy. Moreover, extensive experimental and simulation results demonstrate the model's accuracy in predicting the self-assembly process under different conditions. Model-based analysis indicates that the proposed self-assembly formation strategy can fully utilize the performance of individual robots and exhibits strong self-stability.

2.
Sensors (Basel) ; 24(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124076

RESUMO

In rational decision-making processes, the information interaction among individual robots is a critical factor influencing system stability. We establish a game-theoretic model based on mutual information to address division of labor decision-making and stability issues arising from differential information interaction among swarm robots. Firstly, a mutual information model is employed to measure the information interaction among robots and analyze its influence on the behavior of individual robots. Secondly, employing the Cournot model and the Stackelberg model, we model the diverse decision-making behaviors of swarm robots influenced by discrepancies in mutual information. The intricate decision dynamics exhibited by the system under the disparity mutual information values during the game process, along with the stability of Nash equilibrium points, are analyzed. Finally, dynamic complexity simulations of the game models are simulated under the disparity mutual information values: (1) When ν1 of the game model varies within a certain range, the Nash equilibrium point loses stability and enters a chaotic state. (2) As I(X;Y) increases, the decision-making pattern of robots transitions gradually from the Cournot game to the Stackelberg game. Concurrently, the sensitivity of swarm robotics systems to changes in decision parameter decreases, reducing the likelihood of the system entering a chaotic state.

3.
Artif Life ; 29(1): 21-36, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222754

RESUMO

There has been growing interest in the use of multi-robot systems in various tasks and scenarios. The main attractiveness of such systems is their flexibility, robustness, and scalability. An often overlooked yet promising feature is system modularity, which offers the possibility of harnessing agent specialization, while also enabling system-level upgrades. However, altering the agents' capacities can change the exploration-exploitation balance required to maximize the system's performance. Here, we study the effect of a swarm's heterogeneity on its exploration-exploitation balance while tracking multiple fast-moving evasive targets under the cooperative multi-robot observation of multiple moving targets framework. To this end, we use a decentralized search and tracking strategy with adjustable levels of exploration and exploitation. By indirectly tuning the balance, we first confirm the presence of an optimal balance between these two key competing actions. Next, by substituting slower moving agents with faster ones, we show that the system exhibits a performance improvement without any modifications to the original strategy. In addition, owing to the additional amount of exploitation carried out by the faster agents, we demonstrate that a heterogeneous system's performance can be further improved by reducing an agent's level of connectivity, to favor the conduct of exploratory actions. Furthermore, in studying the influence of the density of swarming agents, we show that the addition of faster agents can counterbalance a reduction in the overall number of agents while maintaining the level of tracking performance. Finally, we explore the challenges of using differentiated strategies to take advantage of the heterogeneous nature of the swarm.

4.
Sensors (Basel) ; 23(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765949

RESUMO

The self-reconfigurable modular robotic system is a class of robots that can alter its configuration by rearranging the connectivity of their component modular units. The reconfiguration deformation planning problem is to find a sequence of reconfiguration actions to transform one reconfiguration into another. In this paper, a hybrid reconfiguration deformation planning algorithm for modular robots is presented to enable reconfiguration between initial and goal configurations. A hybrid algorithm is developed to decompose the configuration into subconfigurations with maximum commonality and implement distributed dynamic mapping of free vertices. The module mapping relationship between the initial and target configurations is then utilized to generate reconfiguration actions. Simulation and experiment results verify the effectiveness of the proposed algorithm.

5.
Sensors (Basel) ; 23(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36679822

RESUMO

Collaborative robots represent an evolution in the field of swarm robotics that is pervasive in modern industrial undertakings from manufacturing to exploration. Though there has been much work on path planning for autonomous robots employing floor plans, energy-efficient navigation of autonomous robots in unknown environments is gaining traction. This work presents a novel methodology of low-overhead collaborative sensing, run-time mapping and localization, and navigation for robot swarms. The aim is to optimize energy consumption for the swarm as a whole rather than individual robots. An energy- and information-aware management algorithm is proposed to optimize the time and energy required for a swarm of autonomous robots to move from a launch area to the predefined destination. This is achieved by modifying the classical Partial Swarm SLAM technique, whereby sections of objects discovered by different members of the swarm are stitched together and broadcast to members of the swarm. Thus, a follower can find the shortest path to the destination while avoiding even far away obstacles in an efficient manner. The proposed algorithm reduces the energy consumption of the swarm as a whole due to the fact that the leading robots sense and discover respective optimal paths and share their discoveries with the followers. The simulation results show that the robots effectively re-optimized the previous solution while sharing necessary information within the swarm. Furthermore, the efficiency of the proposed scheme is shown via comparative results, i.e., reducing traveling distance by 13% for individual robots and up to 11% for the swarm as a whole in the performed experiments.


Assuntos
Robótica , Robótica/métodos , Algoritmos , Simulação por Computador
6.
Sensors (Basel) ; 23(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37430816

RESUMO

Robot swarms are becoming popular in domains that require spatial coordination. Effective human control over swarm members is pivotal for ensuring swarm behaviours align with the dynamic needs of the system. Several techniques have been proposed for scalable human-swarm interaction. However, these techniques were mostly developed in simple simulation environments without guidance on how to scale them up to the real world. This paper addresses this research gap by proposing a metaverse for scalable control of robot swarms and an adaptive framework for different levels of autonomy. In the metaverse, the physical/real world of a swarm symbiotically blends with a virtual world formed from digital twins representing each swarm member and logical control agents. The proposed metaverse drastically decreases swarm control complexity due to human reliance on only a few virtual agents, with each agent dynamically actuating on a sub-swarm. The utility of the metaverse is demonstrated by a case study where humans controlled a swarm of uncrewed ground vehicles (UGVs) using gestural communication, and via a single virtual uncrewed aerial vehicle (UAV). The results show that humans could successfully control the swarm under two different levels of autonomy, while task performance increases as autonomy increases.

7.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005618

RESUMO

Mobile multi-robot systems are well suited for gas leak localization in challenging environments. They offer inherent advantages such as redundancy, scalability, and resilience to hazardous environments, all while enabling autonomous operation, which is key to efficient swarm exploration. To efficiently localize gas sources using concentration measurements, robots need to seek out informative sampling locations. For this, domain knowledge needs to be incorporated into their exploration strategy. We achieve this by means of partial differential equations incorporated into a probabilistic gas dispersion model that is used to generate a spatial uncertainty map of process parameters. Previously, we presented a potential-field-control approach for navigation based on this map. We build upon this work by considering a more realistic gas dispersion model, now taking into account the mechanism of advection, and dynamics of the gas concentration field. The proposed extension is evaluated through extensive simulations. We find that introducing fluctuations in the wind direction makes source localization a fundamentally harder problem to solve. Nevertheless, the proposed approach can recover the gas source distribution and compete with a systematic sampling strategy. The estimator we present in this work is able to robustly recover source candidates within only a few seconds. Larger swarms are able to reduce total uncertainty faster. Our findings emphasize the applicability and robustness of robotic swarm exploration in dynamic and challenging environments for tasks such as gas source localization.

8.
Precis Agric ; : 1-28, 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37363792

RESUMO

Field size and shape constrain spatial and temporal management of agriculture with implications for farm profitability, field biodiversity and environmental performance. Large, conventional equipment struggles to farm small, irregularly shaped fields efficiently. The study hypothesized that autonomous crop machines would make it possible to farm small, non-rectangular fields profitably, thereby preserving field biodiversity and other environmental benefits. Using the experience of the Hands Free Hectare (HFH) demonstration project, this study developed algorithms to estimate field times (h/ha) and field efficiency (%) subject to field size and shape in grain-oil-seed farms of the United Kingdom using four different equipment sets. Results show that field size and shape had a substantial impact on technical and economic performance of all equipment sets, but autonomous machines were able to farm small 1 ha rectangular and non-rectangular fields profitably. Small fields with equipment of all sizes and types required more time, but for HFH equipment sets field size and shape had least impact. Solutions of HFH linear programming model show that autonomous machines decreased wheat production cost by €15/ton to €29/ton and €24/ton to €46/ton for small rectangular and non-rectangular fields respectively, but larger 112 kW and 221 kW equipment with human operators was not profitable for small fields. Sensitivity testing shows that the farms using autonomous machines adapted easily and profitably to scenarios with increasing wage rates and reduced labour availability, whilst farms with conventional equipment struggled. Technical and economic feasibility in small fields imply that autonomous machines could facilitate biodiversity and improve environmental performance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11119-023-10016-w.

9.
Sensors (Basel) ; 22(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35746219

RESUMO

In this study, the general structure of swarm robotics is examined. Algorithms inspired by nature, which form the basis of swarm robotics, are introduced. Communication topologies in robotic swarms, which are similar to the communication methods between living things moving in nature, are included and how these can be used in swarm communication is emphasized. With the developed algorithms, how the swarm can imitate nature and what tasks it can perform have been explained. The various problems that will be encountered in terms of the design of the optimization methods used during the control of the swarm and the solutions are simulated using the Webots software. As a result, ideas on the solutions of these problems and suggestions are proposed.


Assuntos
Algoritmos , Robótica , Evolução Biológica , Comunicação
10.
Sensors (Basel) ; 22(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36015843

RESUMO

In emergency scenarios where the on-site information is completely lacking or the original environmental state has been completely changed, autonomous and mobile swarm robotics are used to quickly build a rescue support system to ensure the safety of follow-up rescuers and improve rescue efficiency. To address the data security problem caused by the complex and changeable topology of the heterogeneous swarm robotics network in the process of building the rescue support system, this paper introduced a decentralized data security communication scheme for heterogeneous swarm robotics. First, we built a decentralized network topology model by using base robot, communication robotics, and business robotics, and it can ensure the stability of the system. Moreover, based on the decentralized network topology model, we designed a storage model using the master-slave blockchain method. The master chain is composed of base robot and communication robotics, which mainly store the digests of robot data in multiple slave chains to reach the global data consensus of the system. The slave chains are composed of business robotics and communication robotics, which mainly store all data on the slave chains to reach the local data consensus of the system. The whole data storage system adopts the Delegated Proof of Stake consensus mechanism to elect proxy nodes to participate in the data consensus tasks in the system and to ensure the data consistency of each robot node in the decentralized network. Additionally, a prototype of the heterogeneous swarm robotics system based on the master-slave chains is constructed to verify the effectiveness of the proposed model. The experimental results show that the scheme effectively solves the data security problem caused by the unstable communication link of the heterogeneous swarm robotics system.


Assuntos
Robótica , Comunicação , Segurança Computacional , Robótica/métodos
11.
Sensors (Basel) ; 21(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804187

RESUMO

Known as an artificial intelligence subarea, Swarm Robotics is a developing study field investigating bio-inspired collaborative control approaches and integrates a huge collection of agents, reasonably plain robots, in a distributed and decentralized manner. It offers an inspiring essential platform for new researchers to be engaged and share new knowledge to examine their concepts in analytical and heuristic strategies. This paper introduces an overview of current activities in Swarm Robotics and examines the present literature in this area to establish to approach between a realistic swarm robotic system and real-world enforcements. First, we review several Swarm Intelligence concepts to define Swarm Robotics systems, reporting their essential qualities and features and contrast them to generic multi-robotic systems. Second, we report a review of the principal projects that allow realistic study of Swarm Robotics. We demonstrate knowledge regarding current hardware platforms and multi-robot simulators. Finally, the forthcoming promissory applications and the troubles to surpass with a view to achieving them have been described and analyzed.

12.
Sensors (Basel) ; 21(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477345

RESUMO

Recently, there has been a fairly rapid increase in interest in the use of UAV swarms both in civilian and military operations. This is mainly due to relatively low cost, greater flexibility, and increasing efficiency of swarms themselves. However, in order to efficiently operate a swarm of UAVs, it is necessary to address the various autonomous behaviors of its constituent elements, to achieve cooperation and suitability to complex scenarios. In order to do so, a novel method for modeling UAV swarm missions and determining behavior for the swarm elements was developed. The proposed method is based on bigraphs with tracking for modeling different tasks and agents activities related to the UAV swarm mission. The key finding of the study is the algorithm for determining all possible behavior policies for swarm elements achieving the objective of the mission within certain assumptions. The design method is scalable, highly automated, and problem-agnostic, which allows to incorporate it in solving different kinds of swarm tasks. Additionally, it separates the mission modeling stage from behavior determining thus allowing new algorithms to be used in the future. Two simulation case studies are presented to demonstrate how the design process deals with typical aspects of a UAV swarm mission.

13.
Sensors (Basel) ; 20(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532071

RESUMO

Swarm robotics focuses on decentralised control of large numbers of simple robots with limited capabilities. Decentralised control in a swarm system requires a reliable communication link between the individuals that is able to provide linear and angular distances between the individuals-Range & Bearing. This study presents the development of an open-source, low-cost communication module which can be attached to miniature sized robots; e.g., Mona. In this study, we only focused on bearing estimation to mathematically model the bearings of neighbouring robots through systematic experiments using real robots. In addition, the model parameters were optimised using a genetic algorithm to provide a reliable and precise model that can be applied for all robots in a swarm. For further investigation and improvement of the system, an additional layer of optimisation on the hardware layout was implemented. The results from the optimisation suggested a new arrangement of the sensors with slight angular displacements on the developed board. The precision of bearing was significantly improved by optimising in both software level and re-arrangement of the sensors' positions on the hardware layout.

14.
Sensors (Basel) ; 20(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992788

RESUMO

This article proposes a holistic localisation framework for underwater robotic swarms to dynamically fuse multiple position estimates of an autonomous underwater vehicle while using fuzzy decision support system. A number of underwater localisation methods have been proposed in the literature for wireless sensor networks. The proposed navigation framework harnesses the established localisation methods in order to provide navigation aids in the absence of acoustic exteroceptive sensors navigation aid (i.e., ultra-short base line) and it can be extended to accommodate newly developed localisation methods by expanding the fuzzy rule base. Simplicity, flexibility, and scalability are the main three advantages that are inherent in the proposed localisation framework when compared to other traditional and commonly adopted underwater localisation methods, such as the Extended Kalman Filter. A physics-based simulation platform that considers environment's hydrodynamics, industrial grade inertial measurement unit, and underwater acoustic communications characteristics is implemented in order to validate the proposed localisation framework on a swarm size of 150 autonomous underwater vehicles. The proposed fuzzy-based localisation algorithm improves the entire swarm mean localisation error and standard deviation by 16.53% and 35.17%, respectively, when compared to the Extended Kalman Filter based localisation with round-robin scheduling.

15.
Sensors (Basel) ; 20(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365993

RESUMO

In this article, we propose a new mobility model, called Attractor Based Inter-Swarm collaborationS (ABISS), for improving the surveillance of restricted areas performed by unmanned autonomous vehicles. This approach uses different types of vehicles which explore an area of interest following unpredictable trajectories based on chaotic solutions of dynamic systems. Collaborations between vehicles are meant to cover some regions of the area which are unreachable by members of one swarm, e.g., unmanned ground vehicles on water surface, by using members of another swarm, e.g., unmanned aerial vehicles. Experimental results demonstrate that collaboration is not only possible but also emerges as part of the configurations calculated by a specially designed and parameterised evolutionary algorithm. Experiments were conducted on 12 different case studies including 30 scenarios each, observing an improvement in the total covered area up to 11%, when comparing ABISS with a non-collaborative approach.


Assuntos
Feromônios , Algoritmos
16.
Sensors (Basel) ; 19(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546655

RESUMO

The advent of the swarm makes it feasible to dynamically monitor a wide area for maritime applications. The crucial problems of underwater swarm monitoring are communication and behavior coordination. To tackle these problems, we propose a wide area monitoring strategy that searches for static targets of interest simultaneously. Traditionally, an underwater robot adopts either acoustic communication or optical communication. However, the former is low in bandwidth and the latter is short in communication range. Our strategy coordinates underwater robots through indirect communication, which is inspired by social insects that exchange information by pheromone. The indirect communication is established with the help of a set of underwater communication nodes. We adopt a virtual pheromone-based controller and provide a set of rules to integrate the area of interest into the pheromone. Based on the information in the virtual pheromone, behavior laws are developed to guide the swarm to monitor and search with nearby information. In addition, a robot can improve its performance when using additional far-away pheromone information. The monitoring strategy is further improved by adopting a swarm evolution scheme which automatically adjusts the visiting period. Experimental results show that our strategy is superior to the random strategy in most cases.

17.
Sensors (Basel) ; 18(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081491

RESUMO

Efficient distributed processing is vital for collaborative searching tasks of robotic swarm systems. Typically, those systems are decentralized, and the members have only limited communication and processing capacities. What is illustrated in this paper is a distributed processing paradigm for robotic swarms moving in a line or v-shape formation. The introduced concept is capable of exploits the line and v-shape formations for 2-D filtering and processing algorithms based on a modified multi-dimensional Roesser model. The communication is only between nearest adjacent members with a simple state variable. As an example, we applied a salient region detection algorithm to the proposed framework. The simulation results indicate the designed paradigm can detect salient regions by using a moving line or v-shape formation in a scanning way. The requirement of communication and processing capability in this framework is minimal, making it a good candidate for collaborative exploration of formatted robotic swarms.

18.
Sensors (Basel) ; 17(5)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28445419

RESUMO

Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles ( µ AUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the µ AUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large µ AUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system.

19.
Bioinspir Biomim ; 19(4)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38810633

RESUMO

Swarm robots are frequently preferred for the exploration of harsh environments and search and rescue operations. This study explores the factors that influence the movement strategies of autonomous robot swarms and their impact on swarm distribution in the field, employing simulation-based analysis. The research consists of two parts: initially, robots undergo free-fall as passive entities, followed by a phase where they employ predefined movement strategies from their fall positions. The study aims to investigate how the initial position and related parameters affect movement characteristics and the ultimate swarm distribution. To achieve this objective, four parameters-radius, height, mass, and the Coefficient of Restitution-were identified, each assigned three different values. The study observes the effects of these parameters on robot motion, considering motion strategies such as Random Walk, Levy Walk, Markov Process, and Brownian Motion. Results indicate that increasing parameter values induce changes in the position values of the free-falling swarm in the first part, which is the initial position for the second part, influencing movement strategies in diverse ways. The outcomes are analyzed concerning the radial and angular spread of the robots. Radial spread measures how far swarm elements spread from their initial positions, while angular spread indicates how homogeneously the robots are distributed according to the polar angle. The study comprehensively investigates how the movement strategies of autonomous robot swarms are impacted by parameters and how these effects manifest in the results. The findings are anticipated to enhance the effective utilization of autonomous robot swarms in exploration missions.


Assuntos
Simulação por Computador , Robótica , Robótica/instrumentação , Robótica/métodos , Movimento/fisiologia , Animais , Biomimética/métodos , Modelos Biológicos , Movimento (Física)
20.
Bioinspir Biomim ; 18(6)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37714177

RESUMO

This study aims to present a novel flocking algorithm for robotic fish that will aid the study of fish in their natural environment. The algorithm, fish-inspired robotic algorithm (FIRA), amalgamates the standard flocking behaviors of attraction, alignment, and repulsion, together with predator avoidance, foraging, general obstacle avoidance, and wandering. The novelty of the FIRA algorithm is the combination of predictive elements to counteract processing delays from sensors and the addition of memory. Furthermore, FIRA is specifically designed to work with an indirect communication method that leads to superior performance in collision avoidance, exploration, foraging, and the emergence of realistic behaviors. By leveraging a high-latency, non-guaranteed communication methodology inspired by stigmergy methods inherent in nature, FIRA successfully addresses some of the obstacles associated with underwater communication. This breakthrough enables the realization of inexpensive, multi-agent swarms while concurrently harnessing the advantages of tetherless communication. FIRA provides a computational light control algorithm for further research with low-cost, low-computing agents. Eventually, FIRA will be used to assimilate robots into a school of biological fish, to study or influence the school. This study endeavors to demonstrate the effectiveness of FIRA by simulating it using a digital twin of a bio-inspired robotic fish. The simulation incorporates the robot's motion and sensors in a realistic, real-time environment with the algorithm used to direct the movements of individual agents. The performance of FIRA was tested against other collective flocking algorithms to determine its effectiveness. From the experiments, it was determined that FIRA outperformed the other algorithms in both collision avoidance and exploration. These experiments establish FIRA as a viable flocking algorithm to mimic fish behavior in robotics.


Assuntos
Robótica , Animais , Comunicação , Instituições Acadêmicas , Algoritmos , Simulação por Computador , Peixes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa