Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
BMC Genomics ; 24(1): 517, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667188

RESUMO

BACKGROUND: Previous preliminary work found that Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin from the eggs of spider Latrodectus tredecimguttatus, could promote the synthesis and release of dopamine in PC12 cells. However, the underlying mechanisms have not been fully clear. Here, the effects of LETX-VI on the gene expression profile and dopamine in PC12 cells were analyzed with the differential transcriptome-based strategies. RESULTS: After treatment of PC12 cells with LETX-VI for 24 h, a total of 356 differentially expressed transcripts were identified. Of them 165 were up-regulated and 191 down-regulated. Relevant GO analysis indicated that LETX-VI modulated the expression of certain genes and thereby affected multiple biological processes in PC12 cells, including protein metabolism, nucleic acid metabolism, substance transport, signaling, neurotransmitter metabolism and release. When western blot analysis was employed to confirm the abundance levels of synaptojanin 1 and synuclein alpha interacting protein, the representatives of highly up- and down-regulated transcript-encoded proteins that are closely related with dopamine respectively, it was found that the level of synaptojanin 1 in the PC12 cells treated with LETX-VI was increased, whereas that of synuclein alpha interacting protein was not obviously altered, suggesting that synaptojanin 1 may be much more involved in the effects of LETX-VI on dopamine. After synaptojanin 1 level was knocked down using siRNA, the levels of both total and released dopamine were significantly decreased, indicating that synaptojanin 1 is a protein positively modulating the synthesis and secretion of dopamine. When the PC12 cells with knocked down synaptojanin 1 were treated by LETX-VI, the adverse effects of synaptojanin 1 knockdown on dopamine were attenuated, confirming that LETX-VI promotes the synthesis and secretion of dopamine at least partially by enhancing the expression of the gene SYNJ1 encoding synaptojanin 1. CONCLUSIONS: This work demonstrates that LETX-VI exerts multiple regulatory effects on the cellular processes in PC12 cells by altering the gene expression profile. LETX-VI modulates the expression of the genes closely related to the synthesis, transport and release of neurotransmitters especially dopamine in PC12 cells, with the gene SYNJ1 encoding synaptojanin 1 as a main target.


Assuntos
Dopamina , Neurotoxinas , Monoéster Fosfórico Hidrolases , Animais , Ratos , Células PC12 , RNA Interferente Pequeno , Sinucleínas , Proteínas de Artrópodes/toxicidade , Proteínas do Ovo/toxicidade
2.
J Neurochem ; 167(3): 461-484, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788328

RESUMO

Parkinson's disease (PD) is an age-related chronic neurological disorder, mainly characterized by the pathological feature of α-synuclein (α-syn) aggregation, with the exact disease pathogenesis unclear. During the onset and progression of PD, synaptic dysfunction, including dysregulation of axonal transport, impaired exocytosis, and endocytosis are identified as crucial events of PD pathogenesis. It has been reported that over-expression of α-syn impairs clathrin-mediated endocytosis (CME) in the synapses. However, the underlying mechanisms still needs to be explored. In this study, we investigated the molecular events underlying the synaptic dysfunction caused by over-expression of wild-type human α-syn and its mutant form, involving series of proteins participating in CME. We found that excessive human α-syn causes impaired fission and uncoating of clathrin-coated vesicles during synaptic vesicle recycling, leading to reduced clustering of synaptic vesicles near the active zone and increased size of plasma membrane and number of endocytic intermediates. Furthermore, over-expressed human α-syn induced changes of CME-associated proteins, among which synaptojanin1 (SYNJ1) showed significant reduction in various brain regions. Over-expression of SYNJ1 in primary hippocampal neurons from α-syn transgenic mice recovered the synaptic vesicle density, clustering and endocytosis. Using fluorescence-conjugated transferrin, we demonstrated that SYNJ1 re-boosted the CME activity by restoring the phosphatidylinositol-4,5-bisphosphate homeostasis. Our data suggested that over-expression of α-syn disrupts synaptic function through interfering with vesicle recycling, which could be alleviated by re-availing of SYNJ1. Our study unrevealed a molecular mechanism of the synaptic dysfunction in PD pathogenesis and provided a potential therapeutic target for treating PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Sinapses/metabolismo
3.
Acta Neuropathol ; 145(5): 573-595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939875

RESUMO

Lipid interaction with α-synuclein (αSyn) has been long implicated in the pathogenesis of Parkinson's disease (PD). However, it has not been fully determined which lipids are involved in the initiation of αSyn aggregation in PD. Here exploiting genetic understanding associating the loss-of-function mutation in Synaptojanin 1 (SYNJ1), a phosphoinositide phosphatase, with familial PD and analysis of postmortem PD brains, we identified a novel lipid molecule involved in the toxic conversion of αSyn and its relation to PD. We first established a SYNJ1 knockout cell model and found SYNJ1 depletion increases the accumulation of pathological αSyn. Lipidomic analysis revealed SYNJ1 depletion elevates the level of its substrate phosphatidylinositol-3,4,5-trisphosphate (PIP3). We then employed Caenorhabditis elegans model to examine the effect of SYNJ1 defect on the neurotoxicity of αSyn. Mutations in SYNJ1 accelerated the accumulation of αSyn aggregation and induced locomotory defects in the nematodes. These results indicate that functional loss of SYNJ1 promotes the pathological aggregation of αSyn via the dysregulation of its substrate PIP3, leading to the aggravation of αSyn-mediated neurodegeneration. Treatment of cultured cell line and primary neurons with PIP3 itself or with PIP3 phosphatase inhibitor resulted in intracellular formation of αSyn inclusions. Indeed, in vitro protein-lipid overlay assay validated that phosphoinositides, especially PIP3, strongly interact with αSyn. Furthermore, the aggregation assay revealed that PIP3 not only accelerates the fibrillation of αSyn, but also induces the formation of fibrils sharing conformational and biochemical characteristics similar to the fibrils amplified from the brains of PD patients. Notably, the immunohistochemical and lipidomic analyses on postmortem brain of patients with sporadic PD showed increased PIP3 level and its colocalization with αSyn. Taken together, PIP3 dysregulation promotes the pathological aggregation of αSyn and increases the risk of developing PD, and PIP3 represents a potent target for intervention in PD.


Assuntos
Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Encéfalo/patologia , Lipídeos , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(22): 12428-12434, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424101

RESUMO

Numerous genes whose mutations cause, or increase the risk of, Parkinson's disease (PD) have been identified. An inactivating mutation (R258Q) in the Sac inositol phosphatase domain of synaptojanin 1 (SJ1/PARK20), a phosphoinositide phosphatase implicated in synaptic vesicle recycling, results in PD. The gene encoding Sac2/INPP5F, another Sac domain-containing protein, is located within a PD risk locus identified by genome-wide association studies. Knock-In mice carrying the SJ1 patient mutation (SJ1RQKI) exhibit PD features, while Sac2 knockout mice (Sac2KO) do not have obvious neurologic defects. We report a "synthetic" effect of the SJ1 mutation and the KO of Sac2 in mice. Most mice with both mutations died perinatally. The occasional survivors had stunted growth, died within 3 wk, and showed abnormalities of striatal dopaminergic nerve terminals at an earlier stage than SJ1RQKI mice. The abnormal accumulation of endocytic factors observed at synapses of cultured SJ1RQKI neurons was more severe in double-mutant neurons. Our results suggest that SJ1 and Sac2 have partially overlapping functions and are consistent with a potential role of Sac2 as a PD risk gene.


Assuntos
Inositol Polifosfato 5-Fosfatases/genética , Doença de Parkinson/enzimologia , Animais , Dopamina/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Inositol Polifosfato 5-Fosfatases/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Terminações Nervosas/metabolismo , Doença de Parkinson/genética , Fenótipo , Sinapses/metabolismo
5.
J Neurosci ; 37(47): 11366-11376, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29054882

RESUMO

Parkinson's disease (PD) is characterized pathologically by the selective loss of substantia nigra (SN) dopaminergic (DAergic) neurons. Recent evidence has suggested a role of LRRK2, linked to the most frequent familial PD, in regulating synaptic vesicle (SV) trafficking. However, the mechanism whereby LRRK2 mutants contribute to nigral vulnerability remains unclear. Here we show that the most common PD mutation LRRK2 G2019S impairs SV endocytosis in ventral midbrain (MB) neurons, including DA neurons, and the slowed endocytosis can be rescued by inhibition of LRRK2 kinase activity. A similar endocytic defect, however, was not observed in LRRK2 mutant neurons from the neocortex (hereafter, cortical neurons) or the hippocampus, suggesting a brain region-specific vulnerability to the G2019S mutation. Additionally, we found MB-specific impairment of SV endocytosis in neurons carrying heterozygous deletion of SYNJ1 (PARK20), a gene that is associated with recessive Parkinsonism. Combining SYNJ1+/- and LRRK2 G2019S does not exacerbate SV endocytosis but impairs sustained exocytosis in MB neurons and alters specific motor functions of 1-year-old male mice. Interestingly, we show that LRRK2 directly phosphorylates synaptojanin1 in vitro, resulting in the disruption of endophilin-synaptojanin1 interaction required for SV endocytosis. Our work suggests a merge of LRRK2 and SYNJ1 pathogenic pathways in deregulating SV trafficking in MB neurons as an underlying molecular mechanism of early PD pathogenesis.SIGNIFICANCE STATEMENT Understanding midbrain dopaminergic (DAergic) neuron-selective vulnerability in PD is essential for the development of targeted therapeutics. We report, for the first time, a nerve terminal impairment in SV trafficking selectively in MB neurons but not cortical neurons caused by two PARK genes: LRRK2 (PARK8) and SYNJ1 (PARK20). We demonstrate that the enhanced kinase activity resulting from the most frequent G2019S mutation in LRRK2 is the key to this impairment. We provide evidence suggesting that LRRK2 G2019S and SYNJ1 loss of function share a similar pathogenic pathway in deregulating DAergic neuron SV endocytosis and that they play additive roles in facilitating each other's pathogenic functions in PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Endocitose , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mesencéfalo/metabolismo , Doença de Parkinson/genética , Vesículas Sinápticas/metabolismo , Animais , Mutação com Ganho de Função , Deleção de Genes , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
6.
Bioessays ; 38 Suppl 1: S119-35, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27417116

RESUMO

Abnormalities in the ability of cells to properly degrade proteins have been identified in many neurodegenerative diseases. Recent work has implicated synaptojanin 1 (SynJ1) in Alzheimer's disease and Parkinson's disease, although the role of this polyphosphoinositide phosphatase in protein degradation has not been thoroughly described. Here, we dissected in vivo the role of SynJ1 in endolysosomal trafficking in zebrafish cone photoreceptors using a SynJ1-deficient zebrafish mutant, nrc(a14) . We found that loss of SynJ1 leads to specific accumulation of late endosomes and autophagosomes early in photoreceptor development. An analysis of autophagic flux revealed that autophagosomes accumulate because of a defect in maturation. In addition we found an increase in vesicles that are highly enriched for PI(3)P, but negative for an early endosome marker in nrc(a14) cones. A mutational analysis of SynJ1 enzymatic domains found that activity of the 5'phosphatase, but not the Sac1 domain, is required to rescue both aberrant late endosomes and autophagosomes. Finally, modulating activity of the PI(4,5)P2 regulator, Arf6, rescued the disrupted trafficking pathways in nrc(a14) cones. Our study describes a specific role for SynJ1 in autophagosomal and endosomal trafficking and provides evidence that PI(4,5)P2 participates in autophagy in a neuronal cell type.


Assuntos
Fatores de Ribosilação do ADP , Autofagia , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra , Peixe-Zebra/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Transporte Proteico , Células Fotorreceptoras Retinianas Cones/fisiologia , Peixe-Zebra/fisiologia
7.
J Bioenerg Biomembr ; 48(6): 569-579, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27878645

RESUMO

The expression of the phosphoinositides phosphatases Synaptojanins (Synjs) 1 and 2 has been shown in brain and in some peripheral tissues, but their expression in the intestine has not been reported. Herein we show that the small and large intestine express Synj1 and Synj2. Their mRNA levels, measured by RT-PCR, are not affected by development in the small intestine but in the colon they increase with age. Immunostaining assays reveal that both Synjs localize at the apical domain of the epithelial cells and at the lamina propria at sites also expressing the neuron marker calretinin. Synj2 staining at the lamina propria is fainter than that of Synj1. In colonocytes Synjs are at the apical membrane and cytosolic membrane vesicles. Synj2 is also at the mitochondria. Western blots reveal that the intestinal mucosa expresses at least two Synj1 (170- and 139-kDa) and two Synj2 (160- and 148-kDa) isoforms. The observations suggest that Synj1-170, Synj2-160, and Synj2-148 in colonocytes, might participate in processes that take place mainly at the apical domain of the epithelial cells whereas Synj1-139 in those at the enteric nervous system. Experimental colitis augments the mRNA abundance of both Synjs in colon but only Synj2 mRNA levels are increased in colon tumors. In conclusion, as far as we know, this is the first report showing expression, location and isoforms of Synj1 and Synj2 in the small and large intestine and that they might participate in intestinal pathology.


Assuntos
Intestino Grosso/química , Intestino Delgado/química , Proteínas do Tecido Nervoso/análise , Monoéster Fosfórico Hidrolases/análise , Animais , Western Blotting , Imuno-Histoquímica , Mucosa Intestinal/química , Camundongos , Mucosa/química , Proteínas do Tecido Nervoso/genética , Monoéster Fosfórico Hidrolases/genética , Isoformas de Proteínas , RNA Mensageiro/análise
8.
J Biol Chem ; 288(44): 32050-63, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24052255

RESUMO

Recent studies link synaptojanin 1 (synj1), the main phosphoinositol (4,5)-biphosphate phosphatase (PI(4,5)P2-degrading enzyme) in the brain and synapses, to Alzheimer disease. Here we report a novel mechanism by which synj1 reversely regulates cellular clearance of amyloid-ß (Aß). Genetic down-regulation of synj1 reduces both extracellular and intracellular Aß levels in N2a cells stably expressing the Swedish mutant of amyloid precursor protein (APP). Moreover, synj1 haploinsufficiency in an Alzheimer disease transgenic mouse model expressing the Swedish mutant APP and the presenilin-1 mutant ΔE9 reduces amyloid plaque load, as well as Aß40 and Aß42 levels in hippocampus of 9-month-old animals. Reduced expression of synj1 attenuates cognitive deficits in these transgenic mice. However, reduction of synj1 does not affect levels of full-length APP and the C-terminal fragment, suggesting that Aß generation by ß- and γ-secretase cleavage is not affected. Instead, synj1 knockdown increases Aß uptake and cellular degradation through accelerated delivery to lysosomes. These effects are partially dependent upon elevated PI(4,5)P2 with synj1 down-regulation. In summary, our data suggest a novel mechanism by which reduction of a PI(4,5)P2-degrading enzyme, synj1, improves amyloid-induced neuropathology and behavior deficits through accelerating cellular Aß clearance.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Hipocampo/patologia , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Fragmentos de Peptídeos/genética , Fosfatidilinositol 4,5-Difosfato/genética , Monoéster Fosfórico Hidrolases/genética , Presenilina-1/genética , Presenilina-1/metabolismo
9.
Front Behav Neurosci ; 18: 1359225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050701

RESUMO

The synaptojanin-1 (SYNJ1) gene is known to be important for dopamine-related disorders. Recent evidence has demonstrated that Synj1 deficient mice (Synj1 +/-) have impairments in dopaminergic synaptic vesicular recycling. However, less is known about how Synj1 deficits affect the mesolimbic system, reward processing, and motivated behavior. To examine the role of the Synj1 gene in motivated behavior, we subjected male and female Synj1 +/- and Synj1 +/+ mice to a battery of behavioral tests evaluating hedonic responses, effortful responding, and responses to psychomotor stimulants. We observed that Synj1 +/- mice exhibit few differences in reward processing and motivated behavior, with normal hedonic responses and motivated responding for sucrose. However, male but not female Synj1 +/- demonstrated an attenuated conditioned place preference for cocaine that could not be attributed to deficits in spatial memory. To further understand the dopamine signaling underlying the attenuated response to cocaine in these mutant mice, we recorded nucleus accumbens dopamine in response to cocaine and observed that Synj1 +/- male and female mice took longer to reach peak dopamine release following experimenter-administered cocaine. However, female mice also showed slower decay in accumbens dopamine that appear to be linked to differences in cocaine-induced DAT responses. These findings demonstrate that SYNJ1 deficiencies result in abnormal mesolimbic DA signaling which has not previously been demonstrated. Our work also highlights the need to develop targeted therapeutics capable of restoring deficits in DAT function, which may be effective for reversing the pathologies associated with Synj1 mutations.

10.
Microbiol Spectr ; 12(4): e0200623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358281

RESUMO

The gram-positive bacterium Staphylococcus aureus can invade non-professional phagocytic cells by associating with the plasma protein fibronectin to exploit host cell integrins. Integrin-mediated internalization of these pathogens is facilitated by the local production of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) via an integrin-associated isoform of phosphatidylinositol-5' kinase. In this study, we addressed the role of PI-4,5-P2-directed phosphatases on internalization of S. aureus. ShRNA-mediated knockdown of individual phosphoinositide 5-phosphatases revealed that synaptojanin1 (SYNJ1) is counteracting invasion of S. aureus into mammalian cells. Indeed, shRNA-mediated depletion as well as genetic deletion of synaptojanin1 via CRISPR/Cas9 resulted in a gain-of-function phenotype with regard to integrin-mediated uptake. Surprisingly, the surface level of integrins was slightly downregulated in Synj1-KO cells. Nevertheless, these cells showed enhanced local accumulation of PI-4,5-P2 and exhibited increased internalization of S. aureus. While the phosphorylation level of the integrin-associated protein tyrosine kinase FAK was unaltered, the integrin-binding and -activating protein talin was enriched in the vicinity of S. aureus in synaptojanin1 knockout cells. Scanning electron microscopy revealed enlarged membrane invaginations in the absence of synaptojanin1 explaining the increased capability of these cells to internalize integrin-bound microorganisms. Importantly, the enhanced uptake by Synj1-KO cells and the exaggerated morphological features were rescued by the re-expression of the wild-type enzyme but not phosphatase inactive mutants. Accordingly, synaptojanin1 activity limits integrin-mediated invasion of S. aureus, corroborating the important role of PI-4,5-P2 during this process.IMPORTANCEStaphylococcus aureus, an important bacterial pathogen, can invade non-professional phagocytes by capturing host fibronectin and engaging integrin α5ß1. Understanding how S. aureus exploits this cell adhesion receptor for efficient cell entry can also shed light on the physiological regulation of integrins by endocytosis. Previous studies have found that a specific membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), supports the internalization process. Here, we extend these findings and report that the local levels of PIP2 are controlled by the activity of the PIP2-directed lipid phosphatase Synaptojanin1. By dephosphorylating PIP2 at bacteria-host cell attachment sites, Synaptojanin1 counteracts the integrin-mediated uptake of the microorganisms. Therefore, our study not only generates new insight into subversion of cellular receptors by pathogenic bacteria but also highlights the role of host cell proteins acting as restriction factors for bacterial invasion at the plasma membrane.


Assuntos
Proteínas do Tecido Nervoso , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Staphylococcus aureus/metabolismo , Integrinas/metabolismo , Fibronectinas/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , RNA Interferente Pequeno , Mamíferos
11.
eNeuro ; 10(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37072173

RESUMO

The accumulation of α-synuclein (α-syn)-enriched protein aggregates is thought to arise from dysfunction in degradation systems within the brain. Recently, missense mutations of SYNJ1 encoding the SAC1 and 5'-phosphatase domains have been found in families with hereditary early-onset Parkinsonism. Previous studies showed that Synj1 haploinsufficiency (Synj1+/-) leads to accumulation of the autophagy substrate p62 and pathologic α-syn proteins in the midbrain (MB) and striatum of aged mice. In this study, we aim to investigate the neuronal degradation pathway using the Synj1+/- MB culture from mouse pups of mixed sex as a model. Our data show that GFP-LC3 puncta formation and cumulative mKeima puncta formation are unaltered at baseline in Synj1+/- MB neurons. However, GFP-LAMP1 puncta is reduced with a similar decrease in endogenous proteins, including lysosomal-associated membrane protein (LAMP)1, LAMP2, and LAMP2A. The LAMP1 vesicles are hyperacidified with enhanced enzymatic activity in Synj1+/- MB neurons. Using a combination of light and electron microscopy (EM), we show that endolysosomal changes are primarily associated with a lack of SAC1 activity. Consistently, expressing the SYNJ1 R258Q mutant in N2a cells reduces the lysosome number. Interestingly, the endolysosomal defects in Synj1+/- neurons does not impact the clearance of exogenously expressed wild-type (WT) α-syn; however, the clearance of α-syn A53T was impaired in the axons of Synj1+/- MB neurons. Taken together, our results suggest axonal vulnerability to endolysosomal defects in Synj1-deficient MB neurons.


Assuntos
Mesencéfalo , Neurônios , Animais , Camundongos , Mesencéfalo/metabolismo , Neurônios/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Lisossomos/metabolismo , Autofagia/fisiologia
12.
Mol Genet Genomic Med ; 11(1): e2064, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148638

RESUMO

BACKGROUND: SYNJ1 encodes Synaptojanin-1, a dual-function poly-phosphoinositide phosphatase that is expressed in the brain to regulate neuronal synaptic vesicle dynamics. Biallelic SYNJ1 variants cause a spectrum of clinical manifestations, from early onset parkinsonism to developmental and epileptic encephalopathy. METHODS: Proband-only exome sequencing was used to identify a homozygous SYNJ1 pathogenic variant in an individual with epileptic encephalopathy. Sanger sequencing was used to confirm the variant. RESULTS: We present an Afro-Caribbean female who developed uncontrollable seizures shortly after birth, accompanied by developmental delay and severe generalized dystonia. She had homozygosity for a novel c.242-2A > G variant in SYNJ1 with both parents being heterozygous carriers. An older sister was reported to have had a similar presentation but was not examined. Both siblings died at an approximate age of 16 years. CONCLUSIONS: We report a novel pathogenic variant in SYNJ1 present in homozygosity leading to developmental and epileptic encephalopathy. Currently, there are only 4 reports describing 10 individuals with SYNJ1-related developmental and epileptic encephalopathy. This case expands the clinical knowledge and the allelic heterogeneity associated with SYNJ1 variants.


Assuntos
Epilepsia Generalizada , Humanos , Feminino , Adolescente , Homozigoto , Encéfalo , Convulsões , Região do Caribe
13.
Front Genet ; 13: 867989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646085

RESUMO

Endosomal trafficking is essential for cellular homeostasis. At the crossroads of distinct intracellular pathways, the endolysosomal system is crucial to maintain critical functions and adapt to the environment. Alterations of endosomal compartments were observed in cells from adult individuals with Down syndrome (DS), suggesting that the dysfunction of the endosomal pathway may contribute to the pathogenesis of DS. However, the nature and the degree of impairment, as well as the timing of onset, remain elusive. Here, by applying imaging and biochemical approaches, we demonstrate that the structure and dynamics of early endosomes are altered in DS cells. Furthermore, we found that recycling trafficking is markedly compromised in these cells. Remarkably, our results in 18-20 week-old human fetal fibroblasts indicate that alterations in the endolysosomal pathway are already present early in development. In addition, we show that overexpression of the polyphosphoinositide phosphatase synaptojanin 1 (Synj1) recapitulates the alterations observed in DS cells, suggesting a role for this lipid phosphatase in the pathogenesis of DS, likely already early in disease development. Overall, these data strengthen the link between the endolysosomal pathway and DS, highlighting a dangerous liaison among Synj1, endosomal trafficking and DS.

14.
Curr Alzheimer Res ; 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464875

RESUMO

Down Syndrome (DS), caused by triplication of human chromosome 21 (Hsa21) is the most common form of intellectual disability worldwide. Recent progress in healthcare has resulted in a dramatic increase in the lifespan of individuals with DS. Unfortunately, most will develop Alzheimer's disease like dementia (DS-AD) as they age. Understanding similarities and differences between DS-AD and the other forms of the disease - i.e., late-onset AD (LOAD) and autosomal dominant AD (ADAD) - will provide important clues for the treatment of DS-AD. In addition to the APP gene that codes the precursor of the main component of amyloid plaques found in the brain of AD patients, other genes on Hsa21 are likely to contribute to disease initiation and progression. This review focuses on SYNJ1, coding the phosphoinositide phosphatase synaptojanin 1 (SYNJ1). First, we highlight the function of SYNJ1 in the brain. We then summarize the involvement of SYNJ1 in the different forms of AD at the genetic, transcriptomic, proteomic and neuropathology levels in humans. We further examine whether results in humans correlate with what has been described in murine and cellular models of the disease and report possible mechanistic links between SYNJ1 and the progression of the disease. Finally, we propose a set of questions that would further strengthen and clarify the role of SYNJ1 in the different forms of AD.

15.
Autophagy ; 18(7): 1746-1747, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35349396

RESUMO

Macroautophagy/autophagy occurs preferentially at synapses and responds to increased neuronal activity states. How synaptic autophagy is coupled to the neuronal activity state is largely unknown. Through genetic approaches we find that ATG-9, the only transmembrane protein in the core autophagy pathway, is transported from the trans-Golgi network to synapses in C. elegans via the AP-3 complex. At synapses ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt the endocytosis pathway, including a mutation associated with early onset Parkinsonism (EOP), lead to abnormal ATG-9 accumulation into subsynaptic clathrin-rich foci, and defects in activity-induced synaptic autophagy. We propose that ATG-9 exo-endocytosis links the activity-dependent synaptic vesicle cycle with autophagosome formation at synapses.


Assuntos
Autofagia , Caenorhabditis elegans , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Caenorhabditis elegans/metabolismo , Clatrina/metabolismo , Endocitose/genética , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo
16.
Neuron ; 110(5): 824-840.e10, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35065714

RESUMO

Autophagy is a cellular degradation pathway essential for neuronal health and function. Autophagosome biogenesis occurs at synapses, is locally regulated, and increases in response to neuronal activity. The mechanisms that couple autophagosome biogenesis to synaptic activity remain unknown. In this study, we determine that trafficking of ATG-9, the only transmembrane protein in the core autophagy pathway, links the synaptic vesicle cycle with autophagy. ATG-9-positive vesicles in C. elegans are generated from the trans-Golgi network via AP-3-dependent budding and delivered to presynaptic sites. At presynaptic sites, ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt endocytosis, including a lesion in synaptojanin 1 associated with Parkinson's disease, result in abnormal ATG-9 accumulation at clathrin-rich synaptic foci and defects in activity-induced presynaptic autophagy. Our findings uncover regulated key steps of ATG-9 trafficking at presynaptic sites and provide evidence that ATG-9 exo-endocytosis couples autophagosome biogenesis at presynaptic sites with the activity-dependent synaptic vesicle cycle.


Assuntos
Caenorhabditis elegans , Vesículas Sinápticas , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Caenorhabditis elegans/metabolismo , Endocitose/fisiologia , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo
17.
FEBS Lett ; 595(19): 2479-2492, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34387861

RESUMO

Although there are many phosphatidic acid (PA) molecular species based on its fatty acyl compositions, their interacting partners have been poorly investigated. Here, we identified synaptojanin-1 (SYNJ1), Parkinson's disease-related protein that is essential for regulating clathrin-mediated synaptic vesicle endocytosis via dually dephosphorylating D5 and D4 position phosphates from phosphatidylinositol (PI) (4,5)-bisphosphate, as a 1-stearoyl-2-docosahexaenoyl (18:0/22:6)-PA-binding protein. SYNJ1 failed to substantially associate with other acidic phospholipids. Although SYNJ1 interacted with 18:0/20:4-PA in addition to 18:0/22:6-PA, the association of the enzyme with 16:0/16:0-, 16:0/18:1-, 18:0/18:0-, or 18:1/18:1-PA was not considerable. 18:0/20:4- and 18:0/22:6-PAs bound to SYNJ1 via its SAC1 domain, which preferentially hydrolyses D4 position phosphate. Moreover, 18:0/20:4- and 18:0/22:6-PA selectively enhanced the D4-phosphatase activity, but not the D5-phosphatase activity, of SYNJ1.


Assuntos
Ácidos Graxos Insaturados/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/farmacologia , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Ácidos Fosfatídicos/metabolismo , Ligação Proteica , Domínios Proteicos
18.
Neurosci Lett ; 765: 136288, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34637856

RESUMO

This mini-review aims to summarize a growing body of literature on synaptojanin 1 (Synj1), a phosphoinositide phosphatase that was initially known to have a prominent role in synaptic vesicle recycling. Synj1 is coded by the SYNJ1 gene, whose mutations and variants are associated with an increasing number of neurological disorders. To better understand the mechanistic role of Synj1 in disease pathogenesis, we review details of phosphoinositide signaling pathways and the reported involvement of Synj1 in membrane trafficking with a specific focus on Parkinson's disease (PD). Recent studies have tremendously advanced our understanding of Synj1 protein structure and function while broadening our view of how Synj1 regulates synaptic membrane trafficking and endosomal trafficking in various organisms and cell types. A growing body of evidence points to inefficient membrane trafficking as key pathogenic mechanisms in neurodegenerative diseases associated with abnormal Synj1 expression. Despite significant progress made in the field, the mechanism by which Synj1 connects to trafficking, signaling, and pathogenesis is lacking and remains to be addressed.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transporte Proteico/fisiologia , Animais , Humanos
19.
Comput Struct Biotechnol J ; 18: 1032-1042, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32419904

RESUMO

Parkinson's disease (PD), Alzheimer's disease (AD) and Amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases hallmarked by the formation of toxic protein aggregates. However, targeting these aggregates therapeutically have thus far shown no success. The treatment of AD has remained particularly problematic since no new drugs have been approved in the last 15 years. Therefore, novel therapeutic targets need to be identified and explored. Here, through the integration of genomic and proteomic data, a set of proteins with strong links to α-synuclein-aggregating neurodegenerative diseases was identified. We propose 17 protein targets that are likely implicated in neurodegeneration and could serve as potential targets. The human phosphatidylinositol 5-phosphatase synaptojanin-1, which has already been independently confirmed to be implicated in Parkinson's and Alzheimer's disease, was among those identified. Despite its involvement in PD and AD, structural aspects are currently missing at the molecular level. We present the first atomistic model of the 5-phosphatase domain of synaptojanin-1 and its binding to its substrate phosphatidylinositol 4,5-bisphosphate (PIP2). We determine structural information on the active site including membrane-embedded molecular dynamics simulations. Deficiency of charge within the active site of the protein is observed, which suggests that a second divalent cation is required to complete dephosphorylation of the substrate. The findings in this work shed light on the protein's binding to phosphatidylinositol 4,5-bisphosphate (PIP2) and give additional insight for future targeting of the protein active site, which might be of interest in neurodegenerative diseases where synaptojanin-1 is overexpressed.

20.
ACS Chem Neurosci ; 11(19): 2999-3007, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32833423

RESUMO

Kainic acid (KA) is an excitotoxic glutamate analogue produced by a marine seaweed. It elicits neuronal excitotoxicity leading to epilepsy in rodents. Activation of transient receptor potential vanilloid subfamily 1 (TRPV1), a nonselective cation channel protein, by capsaicin, prevents KA-induced seizures in a mouse model of temporal lobe epilepsy. However, the precise mechanism behind this protective effect of capsaicin remains unclear. In order to analyze the direct effect of KA on TRPV1, we evaluated the ability of KA to activate TRPV1 and analyzed its binding to TRPV1 using a molecular modeling approach. In vitro, KA activates a Ca2+ influx into TRPV1 expressing HEK293 cells but not in contsrol HEK293 cells. Pretreatment with either capsaicin (1 M) or capsazepine (10 M; TRPV1 antagonist) prevents the effect of KA. Pharmacological inhibition of phospholipase C (PLC) by U73122 or overexpression of phosphatidylinositol 5 phosphatase (Synaptojanin 1; Synj-1) counters the effect of KA. Further, KA treatment causes actin reorganization in HEKTRPV1 cells and PLC inhibition by U73122 prevents this. Molecular modeling data revealed that KA binds to TRPV1 and prebinding with capsaicin prevents the binding of KA to TRPV1. Consistently, the lack of effect of KA in activating chicken TRPV1, which is insensitive to capsaicin, suggests that there is a significant overlap between the sites of KA and capsaicin activation of TRPV1. However, PLC inhibition did not suppress TRPV1 activation by capsaicin. Collectively, our data suggest that KA binds to and activates TRPV1 and causes actin reorganization via PLC-dependent mechanism in vitro. We propose that KA mediates Ca2+ induced toxicity possibly by activating TRPV1. Therefore, inhibiting TRPV1 will be a beneficial strategy in abating Ca2+-induced neurotoxicity.


Assuntos
Canais de Cátion TRPV , Fosfolipases Tipo C , Capsaicina/farmacologia , Células HEK293 , Humanos , Ácido Caínico/toxicidade , Fosfatidilinositóis , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa