Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
New Phytol ; 243(3): 1262-1275, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849316

RESUMO

The plant hormone ethylene is of vital importance in the regulation of plant development and stress responses. Recent studies revealed that 1-aminocyclopropane-1-carboxylic acid (ACC) plays a role beyond its function as an ethylene precursor. However, the absence of reliable methods to quantify ACC and its conjugates malonyl-ACC (MACC), glutamyl-ACC (GACC), and jasmonyl-ACC (JA-ACC) hinders related research. Combining synthetic and analytical chemistry, we present the first, validated methodology to rapidly extract and quantify ACC and its conjugates using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Its relevance was confirmed by application to Arabidopsis mutants with altered ACC metabolism and wild-type plants under stress. Pharmacological and genetic suppression of ACC synthesis resulted in decreased ACC and MACC content, whereas induction led to elevated levels. Salt, wounding, and submergence stress enhanced ACC and MACC production. GACC and JA-ACC were undetectable in vivo; however, GACC was identified in vitro, underscoring the broad applicability of the method. This method provides an efficient tool to study individual functions of ACC and its conjugates, paving the road toward exploration of novel avenues in ACC and ethylene metabolism, and revisiting ethylene literature in view of the recent discovery of an ethylene-independent role of ACC.


Assuntos
Aminoácidos Cíclicos , Arabidopsis , Etilenos , Espectrometria de Massas em Tandem , Arabidopsis/metabolismo , Arabidopsis/genética , Etilenos/metabolismo , Etilenos/biossíntese , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Aminoácidos Cíclicos/metabolismo , Vias Biossintéticas , Estresse Fisiológico , Reprodutibilidade dos Testes , Mutação/genética , Espectrometria de Massa com Cromatografia Líquida
2.
Bioorg Chem ; 143: 107074, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176378

RESUMO

Isosteviol is a tetracyclic diterpenoid obtained by hydrolysis of stevioside. Due to its unique molecular skeleton and extensive pharmacological activities, isosteviol has attracted more and more attention from researchers. This review summarized the structural modification, pharmacological activity and microbial transformation of isosteviol from 04/2008 to 10/2023. In addition, the research history, structural characterization, and pharmacokinetics of isosteviol were also briefly reviewed. This review aims to provide useful literature resources and inspirations for the exploration of diterpenoid drugs.


Assuntos
Diterpenos do Tipo Caurano , Diterpenos , Diterpenos/farmacologia , Diterpenos/química
3.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611829

RESUMO

The development of novel photocatalysts, both visible and UV-responsive, for water decomposition reactions is of great importance. Here we focused on the application of the borates as photocatalysts in water decomposition reactions, including water splitting reaction, hydrogen evolution half-reaction, and oxygen evolution half-reaction. In addition, the rates of photocatalytic hydrogen evolution and oxygen evolution by these borate photocatalysts in different water decomposition reactions were summarized. Further, the review summarized the synthetic chemistry and structural features of existing borate photocatalysts for water decomposition reactions. Synthetic chemistry mainly includes high-temperature solid-state method, sol-gel method, precipitation method, hydrothermal method, boric acid flux method, and high-pressure method. Next, we summarized the crystal structures of the borate photocatalysts, with a particular focus on the form of the B-O unit and metal-oxygen polyhedral in the borates, and used this to classify borate photocatalysts, which are rarely mentioned in the current photocatalysis literature. Finally, we analyzed the relationship between the structural features of the borate photocatalysts and photocatalytic performance to discuss the further challenges faced by the borate photocatalysts for water decomposition reactions.

4.
Angew Chem Int Ed Engl ; : e202412073, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266452

RESUMO

The design and synthesis of hybrid borates by the organic ligand modification method are urgent and undeveloped areas of research. It is difficult to directly integrate organoboronic acids within inorganic borate chemistry by adopting the traditional preparation approaches. This work reports a facile synthetic method to synthesize a large family of pyrazole molecule-protected borates in a rapid and precise manner under mild conditions. A unique cyclic eight-membered B4O4-ring has been identified as the cluster core for all these hybrid borates with two different conformations (boat and crown). This strategy can be applied to a system of pyrazolyl molecules to generate such hybrid borates in two independent routes from organoboronic or inorganic boric acids. Furtherly, the mechanism of 'click reaction' between boric acid and pyrazole induced by copper ions has been proposed based on the synthetic conditions and the structure of intermediate. Due to the bimetallic Cu sites and the functional surfaces, these materials can be used as electrocatalysts for CO2 reduction reaction and efficiently enhance the selectivity of HCOOH and C2H4. Our strategy can be regarded as a typical template technique for organic molecule-protected borates.

5.
Angew Chem Int Ed Engl ; 63(43): e202411225, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-38989662

RESUMO

Methods for producing drugs directly at the cancer site, particularly using bioorthogonal metal catalysts, are being explored to mitigate the side effects of therapy. Albumin-based artificial metalloenzymes (ArMs) catalyze reactions in living mice while protecting the catalyst in the hydrophobic pocket. Here, we describe the in situ preparation and application of biocompatible tumor-targeting ArMs using circulating albumin, which is abundant in the bloodstream. The ArM was formed using blood albumin through the intravenous injection of ruthenium conjugated with an albumin-binding ligand; the tumor-targeting unit was conjugated to the ArM using its catalytic activity, and the ArM was transported to the cancer site. The delivered ArM catalyzed a second tagging reaction of the proapoptotic peptide on the cancer surface, successfully suppressing cancer proliferation. This approach, which efficiently leveraged the persisting reactivity twice in vivo, holds promise for future in vivo metal-catalyzed drug synthesis utilizing endogenous albumin.


Assuntos
Antineoplásicos , Albumina Sérica , Animais , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Albumina Sérica/química , Albumina Sérica/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Humanos , Metaloproteínas/química , Metaloproteínas/metabolismo , Rutênio/química , Catálise , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proliferação de Células/efeitos dos fármacos
6.
Chemistry ; 29(33): e202300652, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37040154

RESUMO

The use of perylenediimide (PDI) building blocks in materials for organic electronic is of considerable interest. This popular n-type organic semiconductor is tuned by introducing peripheral groups in their ortho and bay positions. Such modifications radically alter their optoelectronic properties. In this article, we describe an efficient method to afford regioisomerically pure 1,6/7-(NO2 )2 - and (NH2 )2 -PDIs employing two key steps: the selective crystallization of 1,6-(NO2 )2 -perylene-3,4,9,10-tetracarboxy tetrabutylester and the nitration of regiopure 1,7-Br2 -PDI with silver nitrite. The optoelectronic properties of the resulting regioisomerically pure dinitro, diamino-PDIs and bisazacoronenediimides (BACDs) are reported and demonstrate the need to separate both regioisomers of such n-type organic semiconductors for their inclusion in advanced optoelectronic devices. For the first time, the two regioisomers of the same PDI starting material are available on the multigram scale, which will stimulate the exploration of regioisomerism/properties relationship for this family of dyes.


Assuntos
Perileno , Estrutura Molecular , Perileno/química , Dióxido de Nitrogênio , Imidas/química
7.
J Enzyme Inhib Med Chem ; 38(1): 2155639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629436

RESUMO

Monoterpenoid indole alkaloids (MIAs) represent a major class of active ingredients from the plants of the genus Gelsemium. Gelsemium MIAs with diverse chemical structures can be divided into six categories: gelsedine-, gelsemine-, humantenine-, koumine-, sarpagine- and yohimbane-type. Additionally, gelsemium MIAs exert a wide range of bioactivities, including anti-tumour, immunosuppression, anti-anxiety, analgesia, and so on. Owing to their fascinating structures and potent pharmaceutical properties, these gelsemium MIAs arouse significant organic chemists' interest to design state-of-the-art synthetic strategies for their total synthesis. In this review, we comprehensively summarised recently reported novel gelsemium MIAs, potential pharmacological activities of some active molecules, and total synthetic strategies covering the period from 2013 to 2022. It is expected that this study may open the window to timely illuminate and guide further study and development of gelsemium MIAs and their derivatives in clinical practice.


Assuntos
Gelsemium , Alcaloides de Triptamina e Secologanina , Alcaloides de Triptamina e Secologanina/farmacologia , Alcaloides de Triptamina e Secologanina/química , Gelsemium/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Extratos Vegetais , Dor
8.
Mar Drugs ; 21(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37103365

RESUMO

Fascaplysin is a planar structure pentacyclic alkaloid isolated from sponges, which can effectively induce the apoptosis of cancer cells. In addition, fascaplysin has diverse biological activities, such as antibacterial, anti-tumor, anti-plasmodium, etc. Unfortunately, the planar structure of fascaplysin can be inserted into DNA and such interaction also limits the further application of fascaplysin, necessitating its structural modification. In this review, the biological activity, total synthesis and structural modification of fascaplysin will be summarized, which will provide useful information for pharmaceutical researchers interested in the exploration of marine alkaloids and for the betterment of fascaplysin in particular.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Indóis/farmacologia
9.
Molecules ; 28(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37764325

RESUMO

Excited State Intramolecular Proton Transfer (ESIPT), originally discovered and explored in depth in a number of extensive photophysical studies, is more recently rediscovered as a powerful synthetic tool, offering rapid access to complex polyheterocycles. In our prior work we have employed ESIPT in aromatic o-keto amines and amides, leading to diverse primary photoproducts-complex quinolinols or azacanes possessing a fused lactam moiety-which could additionally be modified in short, high-yielding postphotochemical reactions to further grow complexity of the heterocyclic core scaffold and/or to decorate it with additional functional groups. Given that sulfonamides are generally known as privileged substructures, in this study we pursued two goals: (i) To explore whether sulfonamides could behave as proton donors in the context of ESIPT-initiated photoinduced reactions; (ii) To assess the scope of subsequent complexity-building photochemical and postphotochemical steps, which give access to polyheterocyclic molecular cores with fused cyclic sulfonamide moieties. In this work we show that this is indeed the case. Simple sulfonamide-containing photoprecursors produced the sought-after heterocyclic products in experimentally simple photochemical reactions accompanied by significant step-normalized complexity increases as corroborated by the Böttcher complexity scores.

10.
Bioorg Med Chem ; 41: 116221, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34034148

RESUMO

Chemical knockdown of therapeutic targets using proteolysis targeting chimeras (PROTACs) is a rapidly developing field in drug discovery, but PROTACs are bifunctional molecules that generally show poor bioavailability due to their relatively high molecular weight. Recent developments aimed at the development of next-generation PROTACs include the in vivo synthesis of PROTAC molecules, and the exploitation of PROTACs as chemical tools for in vivo synthesis of ubiquitinated proteins. This short review covers recent advances in these areas and discusses the prospects for in vivo synthetic PROTAC technology.


Assuntos
Descoberta de Drogas , Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Humanos , Terapia de Alvo Molecular , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteólise
11.
Angew Chem Int Ed Engl ; 60(15): 8050-8071, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32621554

RESUMO

Nature-derived cyclic peptides have proven to be a vast source of inspiration for advancing modern pharmaceutical design and synthetic chemistry. The focus of this Review is sunflower trypsin inhibitor-1 (SFTI-1), one of the smallest disulfide-bridged cyclic peptides found in nature. SFTI-1 has an unusual biosynthetic pathway that begins with a dual-purpose albumin precursor and ends with the production of a high-affinity serine protease inhibitor that rivals other inhibitors much larger in size. Investigations on the molecular basis for SFTI-1's rigid structure and adaptable function have planted seeds for thought that have now blossomed in several different fields. Here we survey these applications to highlight the growing potential of SFTI-1 as a versatile template for engineering inhibitors, a prototypic peptide for studying inhibitory mechanisms, a stable scaffold for grafting bioactive peptides, and a model peptide for evaluating peptidomimetic motifs and platform technologies.


Assuntos
Peptídeos Cíclicos/farmacologia , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Animais , Humanos , Modelos Moleculares , Peptídeos Cíclicos/química , Inibidores de Serina Proteinase/química
12.
Bioorg Med Chem ; 28(24): 115831, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199202

RESUMO

Acrolein, a highly reactive α,ß-unsaturated aldehyde, is a compound to which humans are exposed in many different situations and often causes various human diseases. This paper summarizes the reports over the past twenty-five years regarding disease-associated acrolein detected in clinical patients and the role acrolein plays in various diseases. In several diseases, it was found that the increased acrolein acts as a pathogenetic factor. Thus, we propose the utility of over-produced acrolein as a substrate for a promising therapeutic or diagnostic method applicable to a wide range of diseases based on an in vivo synthetic chemistry strategy.


Assuntos
Acroleína/química , Doença de Alzheimer/diagnóstico , Doenças Autoimunes/diagnóstico , Encefalopatias/diagnóstico , Acroleína/análise , Acroleína/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Doenças Autoimunes/terapia , Encefalopatias/terapia , Humanos , Lisina/análogos & derivados , Lisina/sangue , Lisina/líquido cefalorraquidiano , Lisina/química , Lisina/urina , Poliaminas/química , Proteínas/química
13.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764353

RESUMO

Calcium ions regulate a wide array of physiological functions including cell differentiation, proliferation, muscle contraction, neurotransmission, and fertilization. The endoplasmic reticulum (ER) is the major intracellular Ca2+ store and cellular events that induce ER store depletion (e.g., activation of inositol 1,4,5-triphosphate (IP3) receptors) trigger a refilling process known as store-operated calcium entry (SOCE). It requires the intricate interaction between the Ca2+ sensing stromal interaction molecules (STIM) located in the ER membrane and the channel forming Orai proteins in the plasma membrane (PM). The resulting active STIM/Orai complexes form highly selective Ca2+ channels that facilitate a measurable Ca2+ influx into the cytosol followed by successive refilling of the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). STIM and Orai have attracted significant therapeutic interest, as enhanced SOCE has been associated with several cancers, and mutations in STIM and Orai have been linked to immunodeficiency, autoimmune, and muscular diseases. 2-Aminoethyl diphenylborinate (2-APB) is a known modulator and depending on its concentration can inhibit or enhance SOCE. We have synthesized several novel derivatives of 2-APB, introducing halogen and other small substituents systematically on each position of one of the phenyl rings. Using a fluorometric imaging plate reader (FLIPR) Tetra-based calcium imaging assay we have studied how these structural changes of 2-APB affect the SOCE modulation activity at different compound concentrations in MDA-MB-231 breast cancer cells. We have discovered 2-APB derivatives that block SOCE at low concentrations, at which 2-APB usually enhances SOCE.


Assuntos
Compostos de Boro/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Molécula 1 de Interação Estromal/genética , Moléculas de Interação Estromal/genética , Animais , Compostos de Boro/síntese química , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteína ORAI1/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Molécula 1 de Interação Estromal/antagonistas & inibidores , Moléculas de Interação Estromal/antagonistas & inibidores
14.
Immunology ; 157(2): 173-184, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31013364

RESUMO

Leucocyte recruitment is critical during many acute and chronic inflammatory diseases. Chemokines are key mediators of leucocyte recruitment during the inflammatory response, by signalling through specific chemokine G-protein-coupled receptors (GPCRs). In addition, chemokines interact with cell-surface glycosaminoglycans (GAGs) to generate a chemotactic gradient. The chemokine interleukin-8/CXCL8, a prototypical neutrophil chemoattractant, is characterized by a long, highly positively charged GAG-binding C-terminal region, absent in most other chemokines. To examine whether the CXCL8 C-terminal peptide has a modulatory role in GAG binding during neutrophil recruitment, we synthesized the wild-type CXCL8 C-terminal [CXCL8 (54-72)] (Peptide 1), a peptide with a substitution of glutamic acid (E) 70 with lysine (K) (Peptide 2) to increase positive charge; and also, a scrambled sequence peptide (Peptide 3). Surface plasmon resonance showed that Peptide 1, corresponding to the core CXCL8 GAG-binding region, binds to GAG but Peptide 2 binding was detected at lower concentrations. In the absence of cellular GAG, the peptides did not affect CXCL8-induced calcium signalling or neutrophil chemotaxis along a diffusion gradient, suggesting no effect on GPCR binding. All peptides equally inhibited neutrophil adhesion to endothelial cells under physiological flow conditions. Peptide 2, with its greater positive charge and binding to polyanionic GAG, inhibited CXCL8-induced neutrophil transendothelial migration. Our studies suggest that the E70K CXCL8 peptide, may serve as a lead molecule for further development of therapeutic inhibitors of neutrophil-mediated inflammation based on modulation of chemokine-GAG binding.


Assuntos
Adesão Celular/imunologia , Movimento Celular/imunologia , Células Endoteliais/imunologia , Interleucina-8/imunologia , Neutrófilos/imunologia , Células Endoteliais/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Neutrófilos/patologia , Peptídeos/imunologia
15.
New Phytol ; 220(2): 417-424, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30088268

RESUMO

Contents Summary 417 I. Introduction 417 II. Auxin analogs 1: Plant growth regulators 418 III. Auxin analogs 2: Molecular genetics and chemical biology 418 IV. Auxin analogs 3: Structure-guided chemical design 418 V. Auxin analogs 4: Synthetic orthogonal auxin-TIR1 pair 420 VI. Conclusions and future perspectives 422 Acknowledgements 422 References 423 SUMMARY: Plant biologists have been fascinated by auxin - a small chemical hormone so simple in structure yet so powerful - which regulates virtually every aspect of plant growth, development and behavior. Synthetic chemistry has played a major role in unraveling the physiological effects of auxin and the application of synthetic analogs has had a dramatic effect on tissue culture, horticulture and the agriculture of economically relevant plant species. Chemical genetics of the model plant, Arabidopsis thaliana, has helped to elucidate the nuclear auxin signaling pathway mediated by the receptor, TIR1, and opened the door to structure-guided, rational designs of auxin agonists and antagonists. Further improvement and tuning of such analogs has been achieved through derivatization and screening. Finally, by harnessing synthetic chemistry and receptor engineering, an orthogonal auxin-TIR1 pair has been created and developed, enabling spatiotemporal control of auxin perception and response. This synergism of chemistry, biology and engineering sparks new ideas and directions to delineate, uncover and manipulate auxin signaling.


Assuntos
Técnicas de Química Sintética/métodos , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Ácidos Indolacéticos/química , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Relação Estrutura-Atividade
16.
Biochim Biophys Acta Gen Subj ; 1862(2): 358-364, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29129642

RESUMO

BACKGROUND: To imitate the essence of living systems via synthetic chemistry approaches has been attempted. With the progress in supramolecular chemistry, it has become possible to synthesize molecules of a size and complexity close to those of biomacromolecules. Recently, the combination of precisely designed supramolecules with biomolecules has generated structural platforms for designing and creating unique molecular systems. Bridging between synthetic chemistry and biomolecular science is also developing methodologies for the creation of artificial cellular systems. SCOPE OF REVIEW: This paper provides an overview of the recently expanding interdisciplinary research to fuse artificial molecules with biomolecules, that can deepen our understanding of the dynamical ordering of biomolecules. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE: Using bottom-up approaches based on the precise chemical design, synthesis and hybridization of artificial molecules with biological materials have been realizing the construction of sophisticated platforms having the fundamental functions of living systems. The effective hybrid, molecular cyborg, approaches enable not only the establishment of dynamic systems mimicking nature and thus well-defined models for biophysical understanding, but also the creation of those with highly advanced, integrated functions. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.


Assuntos
Técnicas de Química Sintética , Biologia Computacional , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/metabolismo , Modelos Biológicos , Animais , Humanos , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
17.
Molecules ; 23(5)2018 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734769

RESUMO

There is a rapid increase in the percentage of elderly people in Europe. Consequently, the prevalence of age-related diseases will also significantly increase. Therefore, the main goal of MediHealth, an international research project, is to introduce a novel approach for the discovery of active agents of food plants from the Mediterranean diet and other global sources that promote healthy ageing. To achieve this goal, a series of plants from the Mediterranean diet and food plants from other origins are carefully selected and subjected to in silico, cell-based, in vivo (fly and mouse models), and metabolism analyses. Advanced analytical techniques complement the bio-evaluation process for the efficient isolation and identification of the bioactive plant constituents. Furthermore, pharmacological profiling of bioactive natural products, as well as the identification and synthesis of their metabolites, is carried out. Finally, optimization studies are performed in order to proceed to the development of innovative nutraceuticals, dietary supplements or herbal medicinal products. The project is based on an exchange of researchers between nine universities and four companies from European and non-European countries, exploiting the existing complementary multidisciplinary expertise. Herein, the unique and novel approach of this interdisciplinary project is presented.


Assuntos
Produtos Biológicos/química , Dieta Mediterrânea , Suplementos Nutricionais/análise , Envelhecimento Saudável/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Plantas Comestíveis/química , Animais , Disponibilidade Biológica , Produtos Biológicos/farmacocinética , Produtos Biológicos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Envelhecimento Saudável/fisiologia , Humanos , Comunicação Interdisciplinar , Cooperação Internacional , Camundongos , Camundongos Endogâmicos C57BL , Ciências da Nutrição/instrumentação , Ciências da Nutrição/métodos , Compostos Fitoquímicos/química , Plantas Medicinais/química
18.
Philos Trans A Math Phys Eng Sci ; 375(2109)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133446

RESUMO

A feature of many of the chemical systems plausibly involved in the origins of terrestrial life is that they are complex and messy-producing a wide range of compounds via a wide range of mechanisms. However, the fundamental behaviour of such systems is currently not well understood; we do not have the tools to make statistical predictions about such complex chemical networks. This is, in part, due to a lack of quantitative data from which such a theory could be built; specifically, functional measurements of messy chemical systems. Here, we propose that the pantheon of experimental approaches to the origins of life should be expanded to include the study of 'functional measurements'-the direct study of bulk properties of chemical systems and their interactions with other compounds, the formation of structures and other behaviours, even in cases where the precise composition and mechanisms are unknown.This article is part of the themed issue 'Reconceptualizing the origins of life'.


Assuntos
Origem da Vida , Química
19.
Bioorg Med Chem ; 24(22): 6066-6074, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27720325

RESUMO

A novel approach was conducted for fragment-based lead discovery and applied to renin inhibitors. The biochemical screening of a fragment library against renin provided the hit fragment which showed a characteristic interaction pattern with the target protein. The hit fragment bound only to the S1, S3, and S3SP (S3 subpocket) sites without any interactions with the catalytic aspartate residues (Asp32 and Asp215 (pepsin numbering)). Prior to making chemical modifications to the hit fragment, we first identified its essential binding sites by utilizing the hit fragment's substructures. Second, we created a new and smaller scaffold, which better occupied the identified essential S3 and S3SP sites, by utilizing library synthesis with high-throughput chemistry. We then revisited the S1 site and efficiently explored a good building block attaching to the scaffold with library synthesis. In the library syntheses, the binding modes of each pivotal compound were determined and confirmed by X-ray crystallography and the library was strategically designed by structure-based computational approach not only to obtain a more active compound but also to obtain informative Structure Activity Relationship (SAR). As a result, we obtained a lead compound offering synthetic accessibility as well as the improved in vitro ADMET profiles. The fragments and compounds possessing a characteristic interaction pattern provided new structural insights into renin's active site and the potential to create a new generation of renin inhibitors. In addition, we demonstrated our FBDD strategy integrating highly sensitive biochemical assay, X-ray crystallography, and high-throughput synthesis and in silico library design aimed at fragment morphing at the initial stage was effective to elucidate a pocket profile and a promising lead compound.


Assuntos
Descoberta de Drogas , Inibidores de Proteases/farmacologia , Renina/antagonistas & inibidores , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Renina/metabolismo , Relação Estrutura-Atividade
20.
J Environ Sci (China) ; 49: 7-27, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28007181

RESUMO

Hundreds of millions of people around the world are exposed to elevated concentrations of inorganic and organic arsenic compounds, increasing the risk of a wide range of health effects. Studies of the environmental fate and human health effects of arsenic require authentic arsenic compounds. We summarize here the synthesis and characterization of more than a dozen methylated and thiolated arsenic compounds that are not commercially available. We discuss the methods of synthesis for the following 14 trivalent (III) and pentavalent (V) arsenic compounds: monomethylarsonous acid (MMAIII), dicysteinylmethyldithioarsenite (MMAIII(Cys)2), monomethylarsonic acid (MMAV), monomethylmonothioarsonic acid (MMMTAV) or monothio-MMAV, monomethyldithioarsonic acid (MMDTAV) or dithio-MMAV, monomethyltrithioarsonate (MMTTAV) or trithio-MMAV, dimethylarsinous acid (DMAIII), dimethylarsino-glutathione (DMAIII(SG)), dimethylarsinic acid (DMAV), dimethylmonothioarsinic acid (DMMTAV) or monothio-DMAV, dimethyldithioarsinic acid (DMDTAV) or dithio-DMAV, trimethylarsine oxide (TMAOV), arsenobetaine (AsB), and an arsenicin-A model compound. We have reviewed and compared the available methods, synthesized the arsenic compounds in our laboratories, and provided characterization information. On the basis of reaction yield, ease of synthesis and purification of product, safety considerations, and our experience, we recommend a method for the synthesis of each of these arsenic compounds.


Assuntos
Arsênio/química , Arsenicais/química , Segurança Química , Saúde Ambiental , Substâncias Perigosas/química , Ecologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa