Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 30(3): 213-222, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164607

RESUMO

Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.


Assuntos
Bromovirus , Vírus de RNA , Tirosina-tRNA Ligase , Sequência de Bases , Anticódon/genética , RNA Viral/química , RNA de Transferência/química , Bromovirus/genética , Bromovirus/metabolismo , Vírus de RNA/genética , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo , Tirosina/genética , Tirosina/metabolismo , Conformação de Ácido Nucleico
2.
RNA ; 27(6): 653-664, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811147

RESUMO

Structured RNA elements are common in the genomes of RNA viruses, often playing critical roles during viral infection. Some viral RNA elements use forms of tRNA mimicry, but the diverse ways this mimicry can be achieved are poorly understood. Histidine-accepting tRNA-like structures (TLSHis) are examples found at the 3' termini of some positive-sense single-stranded RNA (+ssRNA) viruses where they interact with several host proteins, induce histidylation of the RNA genome, and facilitate processes important for infection, to include genome replication. As only five TLSHis examples had been reported, we explored the possible larger phylogenetic distribution and diversity of this TLS class using bioinformatic approaches. We identified many new examples of TLSHis, yielding a rigorous consensus sequence and secondary structure model that we validated by chemical probing of representative TLSHis RNAs. We confirmed new examples as authentic TLSHis by demonstrating their ability to be histidylated in vitro, then used mutational analyses to imply a tertiary interaction that is likely analogous to the D- and T-loop interaction found in canonical tRNAs. These results expand our understanding of how diverse RNA sequences achieve tRNA-like structure and function in the context of viral RNA genomes and lay the groundwork for high-resolution structural studies of tRNA mimicry by histidine-accepting TLSs.


Assuntos
Vírus de RNA de Cadeia Positiva/química , RNA de Transferência de Histidina/química , Aminoacilação , Conformação de Ácido Nucleico , Filogenia , Vírus de RNA de Cadeia Positiva/classificação , Vírus de RNA de Cadeia Positiva/genética , Vírus de RNA de Cadeia Positiva/metabolismo , RNA de Transferência de Histidina/genética , RNA de Transferência de Histidina/metabolismo , Saccharomyces cerevisiae
3.
RNA ; 27(1): 27-39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33008837

RESUMO

Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3' termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLSVal) are an example that share some clear homology with canonical tRNAs but have several important structural differences. Although many examples of TLSVal have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLSVal We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLSVal substrates and tested their ability to be valylated, confirming previous observations of structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine, causing a loss of valylation activity; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.


Assuntos
Variação Genética , Vírus de Insetos/genética , Filogenia , Vírus de Plantas/genética , RNA de Transferência de Valina/química , RNA Viral/química , Anticódon/química , Anticódon/metabolismo , Sequência de Bases , Sítios de Ligação , Biologia Computacional , Vírus de Insetos/classificação , Vírus de Insetos/metabolismo , Modelos Moleculares , Mimetismo Molecular , Vírus de Plantas/classificação , Vírus de Plantas/metabolismo , Dobramento de RNA , RNA de Transferência de Valina/genética , RNA de Transferência de Valina/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Homologia de Sequência do Ácido Nucleico , Valina/metabolismo
4.
FEBS J ; 286(4): 788-802, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471181

RESUMO

The CGA arginine codon is a rare codon in Saccharomyces cerevisiae. Thus, full-length mature protein synthesis from reporter genes with internal CGA codon repeats are markedly reduced, and the reporters, instead, produce short-sized polypeptides via an unknown mechanism. Considering the product size and similar properties between CGA sense and UGA stop codons, we hypothesized that eukaryote polypeptide-chain release factor complex eRF1/eRF3 catalyses polypeptide release at CGA repeats. Herein, we performed a series of analyses and report that the CGA codon can be, to a certain extent, decoded as a stop codon in yeast. This also raises an intriguing possibility that translation termination factors eRF1/eRF3 rescue ribosomes stalled at CGA codons, releasing premature polypeptides, and competing with canonical tRNAICG to the CGA codon. Our results suggest an alternative ribosomal rescue pathway in eukaryotes. The present results suggest that misdecoding of low efficient codons may play a novel role in global translation regulation in S. cerevisiae.


Assuntos
Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Códon de Terminação , Fatores de Terminação de Peptídeos/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
5.
Biophysics (Nagoya-shi) ; 9: 131-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27493551

RESUMO

In the translation process, translating ribosomes usually move on an mRNA until they reach the stop codon. However, when ribosomes translate an aberrant mRNA, they stall. Then, ribosomes are rescued from the aberrant mRNA, and the aberrant mRNA is subsequently degraded. In eukaryotes, Pelota (Dom34 in yeast) and Hbs1 are responsible for solving general problems of ribosomal stall in translation. In archaea, aPelota and aEF1α, homologous to Pelota and Hbs1, respectively, are considered to be involved in that process. In recent years, great progress has been made in determining structures of Dom34/aPelota and Hbs1/aEF1α. In this review, we focus on the functional roles of Dom34/aPelota and Hbs1/aEF1α in ribosome rescue, based on recent structural studies of them. We will also present questions to be answered by future work.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa