RESUMO
Disturbances in uterine contractile activity contribute to the development of inflammation, and recent evidence indicates that tachykinins, including substance P (SP) and neurokinin A (NKA), are involved in controlling uterine function. Here, we determined the effect of Escherichia coli (E. coli)-induced inflammation on expression of protein receptor subtypes for substance P (NK1R) and neurokinin A (NK2R) in the pig myometrium as well as their role in contractility of inflamed uterus. The severe acute endometritis developed in the E. coli group and the expression of NK1R and NK2R proteins increased in the myometrium. Compared to the pre-administration period, SP (10-6 M) reduced the amplitude and frequency in the myometrium of the E. coli group and the amplitude was higher and the frequency was lower versus other groups. NKA reduced the amplitude and increased the frequency in endometrium/myometrium of the E. coli group. In this group, the amplitude was lower and the frequency was higher than in the CON and SAL groups. Our research showed that NK2R (10-6 M) antagonist application abolished the NKA inhibitory effect on uterine amplitude. The application of the NK1R (10-5 M) antagonist together with SP revealed that the inhibitory effect of SP on uterine contractility is achieved independently of the NKR1. Additionally, taking into account the fact that NKA shows an inhibitory effect with the use of NK2R on uterine amplitude suggests the possibility of therapeutic use of the antagonist as a drug increasing uterine contractility in inflammation.
Assuntos
Neurocinina A , Substância P , Animais , Feminino , Escherichia coli , Infecções por Escherichia coli/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Neurocinina A/farmacologia , Substância P/farmacologia , Suínos , Útero/patologiaRESUMO
Tachykinin (TAC) signaling is an important element in the central control of reproduction. TAC family is mainly composed of substance P (SP), neurokinin A (NKA), and NKB, which bind preferentially to NK1, NK2, and NK3 receptors, respectively. While most studies have focused on the reproductive functions of NKB/NK3R, and to a lesser extent SP/NK1R, the relevance of NK2R, encoded by Tacr2, remains poorly characterized. Here, we address the physiological roles of NK2R in regulating the reproductive axis by characterizing a novel mouse line with congenital ablation of Tacr2. Activation of NK2R evoked acute luteinizing hormone (LH) responses in control mice, similar to those of agonists of NK1R and NK3R. Despite the absence of NK2R, Tacr2-/- mice displayed only partially reduced LH responses to an NK2R agonist, which, nonetheless, were abrogated after blockade of NK3R in Tacr2-/- males. While Tacr2-/- mice displayed normal pubertal timing, LH pulsatility was partially altered in Tacr2-/- females in adulthood, with suppression of basal LH levels, but no changes in the number of LH pulses. In addition, trends for increase in breeding intervals were detected in Tacr2-/- mice. However, null animals of both sexes were fertile, with no changes in estrous cyclicity or sex preference in social behavioral tests. In conclusion, stimulation of NK2R elicited LH responses in mice, while congenital ablation of Tacr2 partially suppressed basal and stimulated LH secretion, with moderate reproductive impact. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.NEW & NOTEWORTHY We have explored here the impact of congenital ablation of the gene (Tacr2) encoding the tachykinin receptor, NK2R, in terms of neuroendocrine control of the reproductive axis, using a novel Tacr2 KO mouse line. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.
Assuntos
Receptores da Neurocinina-2/genética , Reprodução/genética , Animais , Feminino , Hormônios Esteroides Gonadais/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptores da Neurocinina-2/deficiência , Reprodução/fisiologia , Transdução de Sinais/genética , TranscriptomaRESUMO
We demonstrated earlier that renal afferent pathways combine very likely "classical" neural signal transduction to the central nervous system and a substance P (SP)-dependent mechanism to control sympathetic activity. SP content of afferent sensory neurons is known to mediate neurogenic inflammation upon release. We tested the hypothesis that alterations in SP-dependent mechanisms of renal innervation contribute to experimental nephritis. Nephritis was induced by OX-7 antibodies in rats, 6 days later instrumented for recording of blood pressure (BP), heart rate (HR), drug administration, and intrarenal administration (IRA) of the TRPV1 agonist capsaicin to stimulate afferent renal nerve pathways containing SP and electrodes for renal sympathetic nerve activity (RSNA). The presence of the SP receptor NK-1 on renal immune cells was assessed by FACS. IRA capsaicin decreased RSNA from 62.4 ± 5.1 to 21.6 ± 1.5 mV s (*p < 0.05) in controls, a response impaired in nephritis. Suppressed RSNA transiently but completely recovered after systemic administration of a neurokinin 1 (NK1-R) blocker. NK-1 receptors occurred mainly on CD11+ dendritic cells (DCs). An enhanced frequency of CD11c+NK1R+ cell, NK-1 receptor+ macrophages, and DCs was assessed in nephritis. Administration of the NK-1R antagonist aprepitant during nephritis reduced CD11c+NK1R+ cells, macrophage infiltration, renal expression of chemokines, and markers of sclerosis. Hence, SP promoted renal inflammation by weakening sympathoinhibitory mechanisms, while at the same time, substance SP released intrarenally from afferent nerve fibers aggravated immunological processes i.e. by the recruitment of DCs.
Assuntos
Nefrite/metabolismo , Sistema Nervoso Simpático/metabolismo , Taquicininas/metabolismo , Animais , Aprepitanto/farmacologia , Capsaicina/farmacologia , Quimiocinas/metabolismo , Células Dendríticas/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiopatologia , Macrófagos/metabolismo , Masculino , Nefrite/fisiopatologia , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismoRESUMO
BACKGROUND: Supraceliac aortic clamping and unclamping produces ischemia-reperfusion (I/R) injury of the splanchnic organs. The protective effects of tachykinin receptor antagonists, SR140333 (NK1 receptor), SR48968 (NK2 receptor), and SB222200 (NK3 receptor), against I/R-induced inhibition of intestinal motility were tested in rats. MATERIAL AND METHODS: The intestinal transit of Evans blue was measured in untreated rats and animals subjected to skin incision, I/R (1 h superior mesenteric artery occlusion followed by 24 h reperfusion) or sham operation. Surgical procedures were conducted under diethyl ether anesthesia. RESULTS: The gastrointestinal transit has not been markedly affected in rats, which were anesthetized or subjected to skin incision in comparison with untreated animals. In contrast, a sham operation and I/R have significantly reduced the intestinal motility. Pretreatment with NK1-3 blockers (SR140333 [3-30 µg/kg]; SR48968 [3-100 µg/kg]; and SB222200 [10-100 µg/kg]) reversed dose dependently the effects of I/R to the level observed after sham operation only. A combination of NK1+NK2+NK3 inhibitors exerted an additive effect compared with NK1 and NK2 antagonists used as single agents. Similarly, combined NK1+NK2 were more effective than NK2 alone. Sham operation and I/R have shifted the in vitro carbachol concentration-response curves to the right in comparison with untreated animals, a phenomenon partially reversed by NK1-NK3 pretreatment. CONCLUSIONS: Single-agent and combined treatment with NK1-3 antagonists markedly attenuated the gastrointestinal dysmotility evoked by I/R injury. The pretreatment with NK3 blocker proved to be the most active in this experimental setting.
Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Motilidade Gastrointestinal/efeitos dos fármacos , Receptores de Taquicininas/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Circulação Esplâncnica/efeitos dos fármacos , Animais , Benzamidas/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Masculino , Piperidinas/administração & dosagem , Quinolinas/administração & dosagem , Quinuclidinas/administração & dosagem , Ratos , Receptores de Taquicininas/metabolismo , Traumatismo por Reperfusão/etiologia , Taquicininas/metabolismoRESUMO
RFamide-related peptide-3 (RFRP-3) has been postulated as the suppressor of the reproductive axis at hypothalamic, pituitary and gonadal levels. Considering the hypothalamic level, RFRP-3 can suppress the activity of gonadotropin-releasing hormone (GnRH) neurons and their upstream neuronal stimulator, namely; the kisspeptin neurons. The effects of the RFRP-3 on the other regulators of GnRH neurons, however, are not completely investigated. Furthermore, substance P (SP) has been known as one of the coordinators of GnRH/ luteinizing hormone (LH) and the kisspeptin/G protein-coupled receptor 54 (GPR54) systems. The present study was aimed at investigating the impacts of RFRP-3 on the effects of SP on the reproductive performance in ovariectomized female rats. After intracerebroventricular (ICV) cannulation, the rats were subjected to the ICV injection of either SP or RFRP-3 and simultaneous injection of them and their selective antagonists. Blood and hypothalamic samplings and also sexual behavioral test were carried out on two main groups of rats. The analyses of the results of LH radioimmunoassay, gene expression assay for hypothalamic Gnrh1, Kisspeptin and Gpr54 accompanied by sexual behavioral examination revealed that the SP administration promotes reproductive behavior and GnRH/LH system and upregulates Kisspeptin expression. The RFRP-3 administration suppressed reproductive behavior, GnRH / LH system and Kisspeptin expression; however, the simultaneous injection of SP and RFRP-3 was devoid of significant alterations in the assessed parameters. The results showed that RFRP-3 can modulates the impacts of SP on the reproductive performance in ovariectomized female rats in part through adjusting Kisspeptin expression.
Assuntos
Hipotálamo , Animais , Feminino , Hormônios Hipotalâmicos , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neuropeptídeos/metabolismo , Ratos , Substância PRESUMO
The bone marrow (BM) hematopoietic niche is the microenvironment where in the adult hematopoietic stem and progenitor cells (HSPCs) are maintained and regulated. This regulation is tightly controlled through direct cell-cell interactions with mesenchymal stromal stem (MSCs) and reticular cells, adipocytes, osteoblasts and endothelial cells, through binding to extracellular matrix molecules and through signaling by cytokines and hematopoietic growth factors. These interactions provide a healthy environment and secure the maintenance of the HSPC pool, their proliferation, differentiation and migration. Recent studies have shown that innervation of the BM and interactions with the peripheral sympathetic neural system are important for maintenance of the hematopoietic niche, through direct interactions with HSCPs or via interactions with other cells of the HSPC microenvironment. Signaling through adrenergic receptors (ARs), opioid receptors (ORs), endocannabinoid receptors (CRs) on HSPCs and MSCs has been shown to play an important role in HSPC homeostasis and mobilization. In addition, a wide range of neuropeptides and neurotransmitters, such as Neuropeptide Y (NPY), Substance P (SP) and Tachykinins, as well as neurotrophins and neuropoietic growth factors have been shown to be involved in regulation of the hematopoietic niche. Here, a comprehensive overview is given of their role and interactions with important cells in the hematopoietic niche, including HSPCs and MSCs, and their effect on HSPC maintenance, regulation and mobilization.
Assuntos
Células da Medula Óssea/citologia , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Nicho de Células-Tronco/fisiologia , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Mesenquimais/citologiaRESUMO
Tachykinins (TKs) are involved in both the physiological regulation of urinary bladder functions and development of overactive bladder syndrome. The aim of the present study was to investigate the signal transduction pathways of TKs in the detrusor muscle to provide potential pharmacological targets for the treatment of bladder dysfunctions related to enhanced TK production. Contraction force, intracellular Ca2+ concentration, and RhoA activity were measured in the mouse urinary bladder smooth muscle (UBSM). TKs and the NK2 receptor (NK2R)-specific agonist [ß-Ala8]-NKA(4-10) evoked contraction, which was inhibited by the NKR2 antagonist MEN10376. In Gαq/11-deficient mice, [ß-Ala8]-NKA(4-10)-induced contraction and the intracellular Ca2+ concentration increase were abolished. Although Gq/11 proteins are linked principally to phospholipase Cß and inositol trisphosphate-mediated Ca2+ release from intracellular stores, we found that phospholipase Cß inhibition and sarcoplasmic reticulum Ca2+ depletion failed to have any effect on contraction induced by [ß-Ala8]-NKA(4-10). In contrast, lack of extracellular Ca2+ or blockade of voltage-dependent Ca2+ channels (VDCCs) suppressed contraction. Furthermore, [ß-Ala8]-NKA(4-10) increased RhoA activity in the UBSM in a Gq/11-dependent manner and inhibition of Rho kinase with Y-27632 decreased contraction force, whereas the combination of Y-27632 with either VDCC blockade or depletion of extracellular Ca2+ resulted in complete inhibition of [ß-Ala8]-NKA(4-10)-induced contractions. In summary, our results indicate that NK2Rs are linked exclusively to Gq/11 proteins in the UBSM and that the intracellular signaling involves the simultaneous activation of VDCC and the RhoA-Rho kinase pathway. These findings may help to identify potential therapeutic targets of bladder dysfunctions related to upregulation of TKs.
Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Músculo Liso/fisiologia , Receptores da Neurocinina-2/fisiologia , Bexiga Urinária/fisiologia , Quinases Associadas a rho/metabolismo , Animais , Cálcio/metabolismo , Antagonistas de Estrogênios/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Taquicininas/metabolismo , Tamoxifeno/farmacologia , Quinases Associadas a rho/genéticaRESUMO
Context: Atopic dermatitis (AD) is a chronic, inflammatory, itching skin disorder, which may worsen due to stress, depression and anxiety. Tachykinins may be involved in inflammation signaling as well as they may have a role in stress, depression and anxiety. Objective: This study aimed to measure the expression of tachykinin markers, in the skin of patients with AD, and the correlation of these tachykinins with clinical and psychodemographic parameters. Materials and methods: Twenty-eight adult patients with AD were investigated regarding tachykinin expression in skin biopsies, using an immunohistochemical technique. The patients were characterized with clinical and psychodemographic parameters. Results: The number of substance P and neurokinin (NK)A positive nerve fibers, as well as NKA positive mononuclear dermal cells, was increased in lesional compared to non-lesional skin. Interestingly, the depression score and the number of dermal NK-1 receptor (R) positive cells in lesional as well as in non-lesional skin showed a correlation. Conclusion: These findings indicate an upregulation of the tachykinergic system in the inflamed skin of AD.
Assuntos
Dermatite Atópica/metabolismo , Neurocinina A/metabolismo , Receptores da Neurocinina-1/metabolismo , Pele/metabolismo , Substância P/metabolismo , Adulto , Biópsia , Estudos Transversais , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Dermatite Atópica/psicologia , Feminino , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/imunologia , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Neurocinina A/genética , Receptores da Neurocinina-1/genética , Pele/imunologia , Pele/patologia , Substância P/genética , Inquéritos e Questionários , Regulação para Cima , Adulto JovemRESUMO
The tachykinin NK1 receptor was suggested to be involved in psychiatric disorders, but its antagonists have failed to be effective as antidepressants in clinical trials. Hemokinin-1 (HK-1), the newest tachykinin, is present in several brain regions and activates the NK1 receptor similarly to substance P (SP), but acts also through other mechanisms. Therefore, we investigated the roles of the Tac4 gene-derived HK-1 in comparison with SP and neurokinin A (NKA) encoded by the Tac1 gene, as well as the NK1 receptor in anxiety and depression-like behaviors in mice. Mice lacking SP/NKA, HK-1 or the NK1 receptor (Tac1-/-, Tac4-/-, Tacr1-/-, respectively) compared to C57Bl/6 wildtypes (WT), and treatment with the NK1 antagonist CP99994 were used in the experiments. Anxiety was evaluated in the light-dark box (LDB) and the elevated plus maze (EPM), locomotor activity in the open field (OFT) tests. Hedonic behavior was assessed in the sucrose preference test (SPT), depression-like behavior in the tail suspension (TST) and forced swim (FST) tests. FST-induced neuronal responsiveness was evaluated with Fos immunohistochemistry in several stress-related brain regions. In the LDB, Tac4-/- mice spent significantly less, while Tacr1-/- and CP99994-treated mice spent significantly more time in the lit compartment. In the EPM only Tac4-/- showed reduced time in the open arms, but no difference was observed in any other groups. In the OFT Tac4-/- mice showed significantly reduced, while Tac1-/- and Tacr1-/- animals increased motility than the WTs, but CP99994 had no effect. NK1-/- consumed markedly more, while Tac4-/- less sucrose solution compared to WTs. In the TST and FST, Tac4-/- mice showed significantly increased immobility. However, depression-like behavior was decreased both in cases of genetic deletion and pharmacological blockade of the NK1 receptor. FST-induced neuronal activation in different nuclei involved in behavioral and neuroendocrine stress responses was significantly reduced in the brain of Tac4 -/- mice. Our results provide the first evidence for an anxiolytic and anti-depressant-like actions of HK-1 through a presently unknown target-mediated mechanism. Identification of its receptor and/or signaling pathways might open new perspectives for anxiolytic and anti-depressant therapies.
Assuntos
Ansiolíticos/farmacologia , Ansiedade/genética , Depressão/genética , Precursores de Proteínas/genética , Precursores de Proteínas/fisiologia , Taquicininas/genética , Taquicininas/fisiologia , Anedonia , Animais , Ansiedade/psicologia , Depressão/psicologia , Preferências Alimentares , Genes fos , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Receptores da Neurocinina-1/genética , Substância P/genéticaRESUMO
OBJECTIVES: Mast cells (MCs) and nerves play an important role in allergic rhinitis (AR), but little is known about their crosstalk in AR. The aim of this study was to investigate MC-nerve interaction in the human nasal mucosa during AR. METHODS: The association between MCs and nerves, the expression of neuropeptide receptors (neurokinin 1 receptor [NK1R], neurokinin 2 receptor [NK2R], calcitonin gene-related peptide receptor [CGRPR], and MrgX2) on MCs, and protease-activated receptor 2 (PAR2) and tyrosine receptor kinase A (TrkA) on nerve fibres in the human nasal mucosa were investigated with immunofluorescence and real-time PCR. RESULTS: The association between MCs and nerves was found to be significantly increased, although the numbers of MCs and nerve fibres were unchanged during AR. MCs expressing tryptase-chymase (MCtc) were frequently associated with nerve fibres and these contacts increased significantly in AR. Neuropeptide receptors NK1R, NK2R, and CGRPR were firstly found to be largely localised on MCs. The number of MCs expressing NK1R and NK2R, but not CGRPR, was significantly increased in AR. Interestingly, MCtc mostly expressed these neuropeptide receptors. The newly discovered tachykinin receptor MrgX2 was not expressed on nasal MCs, but was expressed on gland cells and increased in AR. Additionally, tachykinergic nerve fibres were found to express PAR2 or TrkA as receptors for MCs. CONCLUSIONS: This study revealed for the first time an increase of MC-nerve association and neuropeptide receptor expression on MCs during AR as well as nerve fibres containing receptors for MCs. These results suggest that targeting or controlling airway sensory nerve function as a modulator of MCs may prevent allergic airway inflammation such as AR.
Assuntos
Mastócitos/metabolismo , Mucosa Nasal/inervação , Fibras Nervosas/metabolismo , Receptores de Neuropeptídeos/metabolismo , Rinite Alérgica/patologia , Adolescente , Adulto , Quimases/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores da Neurocinina-1/metabolismo , Receptores da Neurocinina-2/metabolismo , Receptores de Neuropeptídeos/genética , Substância P/metabolismo , Fatores de Transcrição/metabolismo , Triptases/metabolismo , Ubiquitina Tiolesterase/metabolismo , Adulto JovemRESUMO
The peptides of the tachykinin family participate in the regulation of reproductive function acting at both central and peripheral levels. Our previous data showed that treatment of rats with a tachykinin NK3R antagonist caused a reduction of litter size. In the present study, we analyzed the expression of tachykinins and tachykinin receptors in the rat uterus during early pregnancy. Uterine samples were obtained from early pregnant rats (Days 1-9 of pregnancy) and from nonpregnant rats during the proestrus stage of the ovarian cycle, and real-time quantitative RT-PCR, immunohistochemistry, and Western blot studies were used to investigate the pattern of expression of tachykinins and tachykinin receptors. We found that all tachykinins and tachykinin receptors were locally synthesized in the uterus of early pregnant rats. The expression of substance P, neurokinin B, and the tachykinin receptors NK1R and NK3R mRNAs and proteins underwent major changes during the days around implantation and they were widely distributed in implantation sites, being particularly abundant in decidual cells. These findings support the involvement of the tachykinin system in the series of uterine events that occur around embryo implantation in the rat.
Assuntos
Receptores de Taquicininas/biossíntese , Taquicininas/biossíntese , Útero/metabolismo , Animais , Decídua/citologia , Decídua/metabolismo , Implantação do Embrião/efeitos dos fármacos , Feminino , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Neurocinina B/biossíntese , Gravidez , Proestro , Ratos , Ratos Wistar , Receptores da Neurocinina-1/biossíntese , Receptores da Neurocinina-2/antagonistas & inibidores , Receptores da Neurocinina-2/biossíntese , Receptores de Taquicininas/antagonistas & inibidores , Substância P/biossínteseRESUMO
Neurokinin B (NKB) and its G-protein-coupled receptor, NK3R, have been implicated in the neuroendocrine control of GnRH release; however, little is known about the structure-function relationship of this ligand-receptor pair. Moreover, loss-of-function NK3R mutations cause GnRH deficiency in humans. Using missense mutations in NK3R we previously identified in patients with GnRH deficiency, we demonstrate that Y256H and Y315C NK3R mutations in the fifth and sixth transmembrane domains (TM5 and TM6), resulted in reduced whole-cell (79.3±7.2%) or plasma membrane (67.3±7.3%) levels, respectively, compared with wild-type (WT) NK3R, with near complete loss of inositol phosphate (IP) signaling, implicating these domains in receptor trafficking, processing, and/or stability. We further demonstrate in a FRET-based assay that R295S NK3R, in the third intracellular loop (IL3), bound NKB but impaired dissociation of Gq-protein subunits from the receptor compared with WT NK3R, which showed a 10.0 ± 1.3% reduction in FRET ratios following ligand binding, indicating activation of Gq-protein signaling. Interestingly, R295S NK3R, identified in the heterozygous state in a GnRH-deficient patient, also interfered with dissociation of G proteins and IP signaling from wild-type NK3R, indicative of dominant-negative effects. Collectively, our data illustrate roles for TM5 and TM6 in NK3R trafficking and ligand binding and for IL3 in NK3R signaling.
Assuntos
Hormônio Liberador de Gonadotropina/deficiência , Mutação de Sentido Incorreto , Receptores da Neurocinina-3/genética , Transdução de Sinais/genética , Animais , Sítios de Ligação/genética , Ligação Competitiva/genética , Western Blotting , Células COS , Membrana Celular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Neurocinina B/genética , Neurocinina B/metabolismo , Fosforilação , Multimerização Proteica , Receptores da Neurocinina-3/química , Receptores da Neurocinina-3/metabolismoRESUMO
Diabetes Mellitus is a metabolic disorder, which is characterized by an increase in blood glucose levels. The defects in the secretion or action of insulin are the major cause of diabetes. Increase in the blood glucose level exerts a negative effect on the normal functions of the body organs and this leads to the dysfunctions of cells and tissue and causes vascular complications in diabetic patients. Several studies indicate that neuropeptides are released from the neurosensory cells which are mainly known as tachykinins which provoke major vascular complications in diabetic patients. Tachykinins are known as pro-inflammatory peptides which increase vascular complications and vascular permeability. The duration and severity of diabetes disease increase the risk of vascular complication in patients. The aim of this review is to elaborate the role of tachykinins in microvascular and macrovascular complications in diabetic patients. The study concluded that tachykinins increase micro and macrovascular complications in diabetic patients.
Assuntos
Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicações , Glicemia/metabolismo , Angiopatias Diabéticas/etiologia , Taquicininas , Insulina , Fatores de RiscoRESUMO
BACKGROUND: Neurokinin B; an endogenous decapeptide, mediates its reproductive physiological actions through gonadotropin releasing hormone. Despite the potential role of Neurokinin B on seminal vesicles, its effects on seminal vesicles in adult male mammals remain elusive. We aimed to investigate the potentials of variable doses of Neurokinin B, its agonist and antagonist on histomorphology and expression of NK3R on seminal vesicles, and secretory activity of seminal vesicles in adult male rats. METHODS: Adult male Sprague Dawley rats (n=10 in each group) were administered intraperitoneally with Neurokinin B in three variable doses: 1 µg, 1 ηg and 10 ρg while, Senktide (Neurokinin B agonist) and SB222200 (Neurokinin B antagonist) in 1 µg doses consecutively for 12 days. After 12 days of peptide treatment, half of the animals (n=05) in each group were sacrificed while remaining half (n=05) were kept for another 12 days without any treatment to investigate treatment reversal. Seminal vesicles were dissected and excised tissue was processed for light microscopy, immunohistochemistry and estimation of seminal fructose levels. RESULTS: Treatment with Neurokinin B and Senktide significantly increased while SB222200 slightly decrease the seminal vesicles weight, epithelial height and seminal fructose levels as compared to control. Light microscopy revealed increased epithelial height and epithelial folding as compared to control in all Neurokinin B and Senktide treated groups while decreased in SB222200. Effects of various doses of Neurokinin B, Senktide and SB222200 on seminal vesicles weight, epithelial height, seminal fructose levels and histomorphology were reversed when rats were maintained without treatments. Immuno-expression of Neurokinin B shows no change in treatment and reversal groups. CONCLUSION: Continuous administration of Neurokinin B and Senktide effect positively while SB222200 have detrimental effects on cellular morphology, epithelial height and seminal fructose levels in seminal vesicles. Effects of peptide treatments depicted a reversal towards control group when rats were kept without any treatment.
Assuntos
Neurocinina B , Fragmentos de Peptídeos , Ratos Sprague-Dawley , Receptores da Neurocinina-3 , Glândulas Seminais , Substância P , Animais , Masculino , Ratos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Receptores da Neurocinina-3/metabolismo , Receptores da Neurocinina-3/antagonistas & inibidores , Glândulas Seminais/efeitos dos fármacos , Glândulas Seminais/metabolismo , Substância P/metabolismoRESUMO
Substance P is endogenously released within the locomotor network of the adult lamprey, accelerates the burst frequency of fictive locomotion, and reduces the reciprocal inhibition. Previous studies have shown that dopamine, serotonin, and GABA regulate calcium channels, which control neurotransmitter release, action potential duration, and slow afterhyperpolarization (sAHP). Here we examine the effect of substance P on calcium channels in motoneurons and commissural interneurons using whole cell patch clamp in the lamprey spinal cord. This study analyzed the effects of substance P on calcium currents activated in voltage clamp. We examined the calcium-dependent sAHP in current clamp, to determine the involvement of three calcium channel subtypes modulated by substance P. The effects of substance P on membrane potential and during N-methyl-d-aspartic acid (NMDA) induced oscillations were also analyzed. Depolarizing voltage steps induced inward calcium currents. Substance P reduced the currents carried by calcium by 61% in commissural interneurons and by 31% in motoneurons. Using specific calcium channel antagonists, we show that substance P reduces the sAHP primarily by inhibiting N-type (Ca(V)2.2) channels. Substance P depolarized both motoneurons and commissural interneurons, and we present evidence that this occurs due to an increased input resistance. We also explored the effects of substance P on NMDA-induced oscillations in tetrodotoxin and found it caused a frequency increase. Thus the reduction of calcium entry by substance P and the accompanying decrease of the sAHP amplitude, combined with substance P potentiation of currents activated by NMDA, may both contribute to the increase in fictive locomotion frequency.
Assuntos
Canais de Cálcio Tipo N/metabolismo , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Substância P/farmacologia , Animais , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Lampreias , Potenciais da Membrana , Neurônios Motores/efeitos dos fármacos , Medula Espinal/efeitos dos fármacosRESUMO
OBJECTIVE: Olanzapine, introduced as an alternative to clozapine in schizophrenia therapy, is thought to display a receptor affinity similar to that of clozapine. Antipsychotics are well-known xerogenic drugs. However, clozapine exerts both antagonistic and agonistic salivary effects ('clozapine-induced sialorrhea'), the latter probably via muscarinic M1 type of receptor. We hypothesise that olanzapine also has dual salivary effects. MATERIAL AND METHODS: Effects of intravenous olanzapine were examined in rats, including those subjected to chronic preganglionic parasympathetic denervation (submandibular glands) or combined postganglionic parasympathetic and sympathetic denervation (parotid glands). Secretion was evoked reflexly, and by intravenous methacholine and the tachykinin substance P. RESULTS: At 0.01-1 mg kg(-1), olanzapine dose dependently reduced secretion in response to methacholine or reflex stimulus but not that to substance P. At 10 mg kg(-1), olanzapine evoked a long-lasting secretion, independent of the autonomic innervation as well as of α- and ß-adrenergic receptors and muscarinic receptors. The secretion was reduced, but not abolished, by a substance P receptor antagonist. CONCLUSIONS: Like clozapine, olanzapine evoked secretion. The response to olanzapine was greater and, in contrast to clozapine, involved non-traditional gland receptors (such as substance P receptors). The findings imply that olanzapine plays an excitatory role via tachykinin receptors in humans.
Assuntos
Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Salivação/efeitos dos fármacos , Animais , Feminino , Modelos Animais , Olanzapina , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Alzheimer's disease (AD) brings heavy burden to society and family. There is an urgent need to find effective methods for disease diagnosis and treatment. The robust rank aggregation (RRA) approach that could aggregate the resulting gene lists has been widely utilized in genomic data analysis. OBJECTIVE: To identify hub genes using RRA approach in AD. METHODS: Seven microarray datasets in frontal cortex from GEO database were used to identify differential expressed genes (DEGs) in AD patients using RRA approach. STRING was performed to explore the protein-to-protein interaction (PPI). Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were utilized for enrichment analysis. Human Gene Connectome and Gene Set Enrichment Analysis were used for functional annotation. Finally, the expression levels of hub genes were validated in the cortex of 5xFAD mice by quantitative real-time polymerase chain reaction. RESULTS: After RRA analysis, 473 DEGs (216 upregulated and 257 downregulated) were identified in AD samples. PPI showed that DEGs had a total of 416 nodes and 2750 edges. These genes were divided into 17 clusters, each of which contains at least three genes. After functional annotation and enrichment analysis, TAC1 is identified as the hub gene and may be related to synaptic function and inflammation. In addition, Tac1 was found downregulated in cortices of 5xFAD mice. CONCLUSION: In the current study, TAC1 is identified as a key gene in the frontal cortex of AD, providing insight into the possible pathogenesis and potential therapeutic targets for this disease.
Assuntos
Doença de Alzheimer , Redes Reguladoras de Genes , Humanos , Animais , Camundongos , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica/métodos , Doença de Alzheimer/genética , Análise em Microsséries , Biologia Computacional/métodosRESUMO
The carcinoid syndrome (CS) is a debilitating disease that affects approximately 20% of patients with neuroendocrine neoplasms (NEN). Due to the increasing incidence and improved overall survival of patients with NEN over recent decades, patients are increasingly suffering from chronic and refractory CS symptoms. At present, symptom control is hampered by an incomplete understanding of the pathophysiology of this syndrome. This systematic review is the first to critically appraise the available evidence for the various hormonal mediators considered to play a causative role in the CS. Overall, evidence for the putative mediators of the CS was scarce and often of poor quality. Based on the available literature, data are only sufficient to agree on the role of serotonin as a mediator of CS-associated diarrhea and fibrosis. A direct role for tachykinins and an indirect role of catecholamines in the pathogenesis of the CS is suggested by several studies. Currently, there is insufficient evidence to link histamine, bradykinin, kallikrein, prostaglandins, or motilin to the CS. To summarize, available literature only sufficiently appoints serotonin and suggests a role for tachykinins and catecholamines as mediators of the CS, with insufficient evidence for other putative mediators. Descriptions of the CS should be revised to focus on these proven hormonal associations to be more accurate and further research is needed into other potential mediators.
RESUMO
Neurokinin B (NKB) and its cognate receptor, NK3R, play a key role in the regulation of reproduction. NKB belongs to the family of tachykinins, which also includes substance P and neurokinin A, both encoded by the by the gene TAC1, and hemokinin-1, encoded by the TAC4 gene. In addition to NK3R, tachykinin effects are mediated by NK1R and NK2R, encoded by the genes TACR1 and TACR2, respectively. The role of these other tachykinins and receptors in the regulation of women infertility is mainly unknown. We have analyzed the expression profile of TAC1, TAC4, TACR1, and TACR2 in mural granulosa and cumulus cells from women presenting different infertility etiologies, including polycystic ovarian syndrome, advanced maternal age, low ovarian response, and endometriosis. We also studied the expression of MME, the gene encoding neprilysin, the most important enzyme involved in tachykinin degradation. Our data show that TAC1, TAC4, TACR1, TACR2, and MME expression is dysregulated in a different manner depending on the etiology of women infertility. The abnormal expression of these tachykinins and their receptors might be involved in the decreased fertility of these patients, offering a new insight regarding the diagnosis and treatment of women infertility.
Assuntos
Células da Granulosa , Infertilidade Feminina , Taquicininas , Feminino , Humanos , Células da Granulosa/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Neprilisina , Receptores da Neurocinina-1/metabolismo , Substância P/metabolismo , Taquicininas/genética , Taquicininas/metabolismoRESUMO
Metal ions are irreplaceable in many biological processes. They are components of numerous metalloproteins and serve as cofactors or structural elements for enzymes. Interestingly, iron, copper and zinc play important roles in accelerating or preventing neoplastic cell transformation. Noteworthily, a lot of proliferative and invasive mechanisms are exploited by both malignant tumors and pregnancy. Cancer cells, as well as developing placenta cells, create a microenvironment supportive of immunologic privilege and angiogenesis. Therefore, pregnancy and cancer progression share many similarities. Moreover, during preeclampsia and cancer, significant changes in relevant trace element concentrations, tachykinin levels, expressions of neurokinin receptors, oxidative stress and angiogenic imbalance are observed. This sheds a new light on the role of metal ions and tachykinins in cancer progression and pregnancy, especially in preeclamptic women.