Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37522363

RESUMO

Xenopus laevis tadpoles can regenerate whole tails after amputation. We have previously reported that interleukin 11 (il11) is required for tail regeneration. In this study, we have screened for genes that support tail regeneration under Il11 signaling in a certain cell type and have identified the previously uncharacterized genes Xetrov90002578m.L and Xetrov90002579m.S [referred to hereafter as regeneration factors expressed on myeloid.L (rfem.L) and rfem.S]. Knockdown (KD) of rfem.L and rfem.S causes defects of tail regeneration, indicating that rfem.L and/or rfem.S are required for tail regeneration. Single-cell RNA sequencing (scRNA-seq) revealed that rfem.L and rfem.S are expressed in a subset of leukocytes with a macrophage-like gene expression profile. KD of colony-stimulating factor 1 (csf1), which is essential for macrophage differentiation and survival, reduced rfem.L and rfem.S expression levels and the number of rfem.L- and rfem.S-expressing cells in the regeneration bud. Furthermore, forced expression of rfem.L under control of the mpeg1 promoter, which drives rfem.L in macrophage-like cells, rescues rfem.L and rfem.S KD-induced tail regeneration defects. Our findings suggest that rfem.L or rfem.S expression in macrophage-like cells is required for tail regeneration.


Assuntos
Interleucina-11 , Transdução de Sinais , Animais , Xenopus laevis/genética , Xenopus laevis/metabolismo , Interleucina-11/metabolismo , Larva/genética , Transdução de Sinais/genética , Macrófagos , Cauda
2.
Development ; 147(3)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31988186

RESUMO

Regeneration-competent vertebrates are considered to suppress inflammation faster than non-regenerating ones. Hence, understanding the cellular mechanisms affected by immune cells and inflammation can help develop strategies to promote tissue repair and regeneration. Here, we took advantage of naturally occurring tail regeneration-competent and -incompetent developmental stages of Xenopus tadpoles. We first establish the essential role of the myeloid lineage for tail regeneration in the regeneration-competent tadpoles. We then reveal that upon tail amputation there is a myeloid lineage-dependent change in amputation-induced apoptosis levels, which in turn promotes tissue remodelling, and ultimately leads to the relocalization of the regeneration-organizing cells responsible for progenitor proliferation. These cellular mechanisms failed to be executed in regeneration-incompetent tadpoles. We demonstrate that regeneration incompetency is characterized by inflammatory myeloid cells whereas regeneration competency is associated with reparative myeloid cells. Moreover, treatment of regeneration-incompetent tadpoles with immune-suppressing drugs restores myeloid lineage-controlled cellular mechanisms. Collectively, our work reveals the effects of differential activation of the myeloid lineage on the creation of a regeneration-permissive environment and could be further exploited to devise strategies for regenerative medicine purposes.


Assuntos
Linhagem da Célula/fisiologia , Células Mieloides/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Xenopus laevis/fisiologia , Animais , Apoptose/efeitos dos fármacos , Matriz Extracelular/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imunossupressores/farmacologia , Larva/fisiologia , Regeneração/efeitos dos fármacos , Medicina Regenerativa/métodos
3.
Dev Biol ; 473: 59-70, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484704

RESUMO

Xenopus tadpoles are a unique model for regeneration in that they exhibit two distinct phases of age-specific regenerative competence. In Xenopus laevis, young tadpoles fully regenerate following major injuries such as tail transection, then transiently lose regenerative competence during the "refractory period" from stages 45-47. Regenerative competence is then regained in older tadpoles before being permanently lost during metamorphosis. Here we show that a similar refractory period exists in X. tropicalis. Notably, tadpoles lose regenerative competence gradually in X. tropicalis, with full regenerative competence lost at stage 47. We find that the refractory period coincides closely with depletion of maternal yolk stores and the onset of independent feeding, and so we hypothesized that it might be caused in part by nutrient stress. In support of this hypothesis, we find that cell proliferation declines throughout the tail as the refractory period approaches. When we block nutrient mobilization by inhibiting mTOR signaling, we find that tadpole growth and regeneration are reduced, while yolk stores persist. Finally, we are able to restore regenerative competence and cell proliferation during the refractory period by abundantly feeding tadpoles. Our study argues that nutrient stress contributes to lack of regenerative competence and introduces the X. tropicalis refractory period as a valuable new model for interrogating how metabolic constraints inform regeneration.


Assuntos
Regeneração/fisiologia , Cauda/fisiologia , Xenopus/embriologia , Animais , Proliferação de Células , Gema de Ovo , Larva/metabolismo , Metamorfose Biológica/fisiologia , Nutrientes , Transdução de Sinais , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
4.
Development ; 146(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30696711

RESUMO

Amphioxus, a cephalochordate, is an ideal animal in which to address questions about the evolution of regenerative ability and the mechanisms behind the invertebrate to vertebrate transition in chordates. However, the cellular and molecular basis of tail regeneration in amphioxus remains largely ill-defined. We confirmed that the tail regeneration of amphioxus Branchiostoma japonicum is a vertebrate-like epimorphosis process. We performed transcriptome analysis of tail regenerates, which provided many clues for exploring the mechanism of tail regeneration. Importantly, we showed that BMP2/4 and its related signaling pathway components are essential for the process of tail regeneration, revealing an evolutionarily conserved genetic regulatory system involved in regeneration in many metazoans. We serendipitously discovered that bmp2/4 expression is immediately inducible by general wounds and that expression of bmp2/4 can be regarded as a biomarker of wounds in amphioxus. Collectively, our results provide a framework for understanding the evolution and diversity of cellular and molecular events of tail regeneration in vertebrates.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Anfioxos/fisiologia , Regeneração , Transdução de Sinais , Cauda/fisiologia , Animais , Apoptose , Evolução Biológica , Biomarcadores/metabolismo , Proliferação de Células , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Filogenia , Análise de Sequência de RNA , Cicatrização
5.
Wound Repair Regen ; 30(6): 707-725, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301622

RESUMO

Xenopus tropicalis tadpoles have the capacity for scarless regeneration of appendages including the limb and tail. Following injury, transcriptional programs must be activated and inactivated with high spatial and temporal resolution to result in a properly patterned appendage. Functional studies have established that histone-modifying enzymes that act to close chromatin are required for regeneration, but the genomic regions sensitive to these activities are not fully established. Here we show that early inhibition of HDAC or EZH2 activity results in incomplete tail regeneration. To identify how each of these perturbations impacts chromatin accessibility, we applied an assay for transposase-accessible chromatin (ATAC-seq) to HDAC or EZH2-inhibited regenerating tadpoles. We find that neither perturbation results in a global increase in chromatin accessibility, but that both inhibitors have targeted effects on chromatin accessibility and gene expression. Upon HDAC inhibition, regulatory regions neighbouring genes associated with neuronal regeneration are preferentially accessible, whereas regions associated with immune response and apoptosis are preferentially accessible following EZH2 inhibition. Together, these results suggest distinct roles for these two chromatin-closing activities in appendage regeneration.


Assuntos
Cromatina , Cicatrização , Animais , Regeneração/fisiologia , Extremidades , Larva/fisiologia
6.
Dev Dyn ; 250(6): 852-865, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33410213

RESUMO

BACKGROUND: Histone deacetylases (HDACs) regulate transcriptional responses to injury stimuli that are critical for successful tissue regeneration. Previously we showed that HDAC inhibitor romidepsin potently inhibits axolotl tail regeneration when applied for only 1-minute postamputation (MPA). RESULTS: Here we tested CoCl2, a chemical that induces hypoxia and cellular stress, for potential to reverse romidepsin inhibition of tail regeneration. Partial rescue of regeneration was observed among embryos co-treated with romidepsin and CoCl2 for 1 MPA, however, extending the CoCl2 dosage window either inhibited regeneration (CoCl2 :0 to 30 MPA) or was lethal (CoCl2 :0 to 24 hours postamputation; HPA). CoCl2 :0 to 30 MPA caused tissue damage, tissue loss, and cell death at the distal tail tip, while CoCl2 treatment of non-amputated embryos or CoCl2 :60 to 90 MPA treatment after re-epithelialization did not inhibit tail regeneration. CoCl2 -romidepsin:1 MPA treatment partially restored expression of transcription factors that are typical of appendage regeneration, while CoCl2 :0 to 30 MPA significantly increased expression of genes associated with cell stress and inflammation. Additional experiments showed that CoCl2 :0 to 1 MPA and CoCl2 :0 to 30 MPA significantly increased levels of glutathione and reactive oxygen species, respectively. CONCLUSION: Our study identifies a temporal window from tail amputation to re-epithelialization, within which injury activated cells are highly sensitive to CoCl2 perturbation of redox homeostasis.


Assuntos
Ambystoma mexicanum/fisiologia , Cobalto/farmacologia , Regeneração/efeitos dos fármacos , Cauda/fisiologia , Amputação Cirúrgica , Animais , Morte Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Cauda/efeitos dos fármacos , Fatores de Tempo
7.
Dev Dyn ; 250(9): 1381-1392, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33137227

RESUMO

BACKGROUND: Xenopus embryos and tadpoles are versatile models for embryological, cell biological, and regenerative studies. Genomic and transcriptomic approaches have been increasingly employed in these frogs. Most of these genome-wide analyses have profiled tissues in bulk, but there are many scenarios where isolation of single cells may be advantageous, including isolation of a preferred cell type, or generation of a single-cell suspension for applications such as scRNA-Seq. RESULTS: Here we present a protocol for the disaggregation of complex tail and limb bud tissue, and use cell type-specific fluorescence in transgenic X. tropicalis appendages to isolate specific cell populations using fluorescence activated cell sorting (FACS). Our protocol addresses a specific challenge in Xenopus embryos and tadpoles: the storage of maternal yolk platelets in each cell, which can introduce light scatter and thereby false positives into FACS analysis. CONCLUSIONS: Here we gate against both nontransgenic and ubiquitously transgenic animals to reduce both false positives and false negatives. We use the Xtr.Tg(pax6:GFP;cryga:RFP;actc1:RFP)Papal transgenic line as a test case to demonstrate that nucleic acid preparations made from sorted cells are high quality and specific. We anticipate this method will be adaptable to study various cell types that have transgenic reporter lines to better profile cell types of interest.


Assuntos
Extremidades , Estudo de Associação Genômica Ampla , Animais , Animais Geneticamente Modificados , Citometria de Fluxo/métodos , Xenopus laevis/genética
8.
Dev Dyn ; 250(6): 880-895, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32885536

RESUMO

BACKGROUND: Regeneration of complex patterned structures is well described among, although limited to a small sampling of, amphibians. This limitation impedes our understanding of the full range of regenerative competencies within this class of vertebrates, according to phylogeny, developmental life stage, and age. To broaden the phylogenetic breath of this research, we characterized the regenerative capacity of the Texas blind salamander (Eurycea rathbuni), a protected salamander native to the Edwards Aquifer of San Marcos, Texas and colonized by the San Marcos Aquatic Resource Center. As field observations suggested regenerative abilities in this population, the forelimb stump of a live captured female was amputated in the hopes of restoring the structure, and thus locomotion in the animal. Tails were clipped from two males to additionally document tail regeneration. RESULTS: We show that the Texas blind salamander exhibits robust limb and tail regeneration, like all other studied Plethodontidae. Regeneration in this species is associated with wound epithelium formation, blastema formation, and subsequent patterning and differentiation of the regenerate. CONCLUSIONS: The study has shown that the Texas blind salamander is a valuable model to study regenerative processes, and that therapeutic surgeries offer a valuable means to help maintain and conserve this vulnerable species.


Assuntos
Membro Anterior/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Urodelos/fisiologia , Animais , Diferenciação Celular/fisiologia , Feminino , Masculino , Filogenia , Urodelos/crescimento & desenvolvimento
9.
Biochem Biophys Res Commun ; 565: 91-96, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34102475

RESUMO

Amphibians such as Xenopus tropicalis exhibit a remarkable capacity for tissue regeneration after traumatic injury. Although transforming growth factor-ß (TGF-ß) receptor signaling is known to be essential for tissue regeneration in fish and amphibians, the role of TGF-ß ligands in this process is not well understood. Here, we show that inhibition of TGF-ß1 function prevents tail regeneration in Xenopus tropicalis tadpoles. We found that expression of tgfb1 is present before tail amputation and is sustained throughout the regeneration process. CRISPR-mediated knock-out (KO) of tgfb1 retards tail regeneration; the phenotype of tgfb1 KO tadpoles can be rescued by injection of tgfb1 mRNA. Cell proliferation, a critical event for the success of tissue regeneration, is downregulated in tgfb1 KO tadpoles. In addition, tgfb1 KO reduces the expression of phosphorylated Smad2/3 (pSmad2/3) which is important for TGF-ß signal-mediated cell proliferation. Collectively, our results show that TGF-ß1 regulates cell proliferation through the activation of Smad2/3. We therefore propose that TGF-ß1 plays a critical role in TGF-ß receptor-dependent tadpole tail regeneration in Xenopus.


Assuntos
Larva/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Proliferação de Células , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo
10.
J Exp Zool B Mol Dev Evol ; 336(2): 145-164, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31532061

RESUMO

The present review hypothesizes that during the transition from water to land, amniotes lost part of the genetic program for metamorphosis utilized in larvae of their amphibian ancestors, a program that in extant fish and amphibians allows organ regeneration. The direct development of amniotes, with their growth from embryos to adults, occurred with the elimination of larval stages, increases the efficiency of immune responses and the complexity of nervous circuits. In amniotes, T-cells and macrophages likely eliminate embryonic-larval antigens that are replaced with the definitive antigens of adult organs. Among lepidosaurians numerous lizard families during the Permian and Triassic evolved the process of tail autotomy to escape predation, followed by tail regeneration. Autotomy limits inflammation allowing the formation of a regenerative blastema rich in the immunosuppressant and hygroscopic hyaluronic acid. Expression loss of developmental genes for metamorphosis and segmentation in addition to an effective immune system, determined an imperfect regeneration of the tail. Genes involved in somitogenesis were likely lost or are inactivated and the axial skeleton and muscles of the original tail are replaced with a nonsegmented cartilaginous tube and segmental myotomes. Lack of neural genes, negative influence of immune system, and isolation of the regenerating spinal cord within the cartilaginous tube impede the production of nerve and glial cells, and a stratified spinal cord with ganglia. Tissue and organ regeneration in other body regions of lizards and other reptiles is relatively limited, like in the other amniotes, although the cartilage shows a higher regenerative capability than in mammals.


Assuntos
Evolução Biológica , Lagartos/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Animais , Lagartos/genética , Regeneração/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa