Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Hum Brain Mapp ; 45(2): e26583, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339902

RESUMO

Although it has been established that cross-modal activations occur in the occipital cortex during auditory processing among congenitally and early blind listeners, it remains uncertain whether these activations in various occipital regions reflect sensory analysis of specific sound properties, non-perceptual cognitive operations associated with active tasks, or the interplay between sensory analysis and cognitive operations. This fMRI study aimed to investigate cross-modal responses in occipital regions, specifically V5/MT and V1, during passive and active pitch perception by early blind individuals compared to sighted individuals. The data showed that V5/MT was responsive to pitch during passive perception, and its activations increased with task complexity. By contrast, widespread occipital regions, including V1, were only recruited during two active perception tasks, and their activations were also modulated by task complexity. These fMRI results from blind individuals suggest that while V5/MT activations are both stimulus-responsive and task-modulated, activations in other occipital regions, including V1, are dependent on the task, indicating similarities and differences between various visual areas during auditory processing.


Assuntos
Lobo Occipital , Percepção da Altura Sonora , Humanos , Lobo Occipital/diagnóstico por imagem , Percepção da Altura Sonora/fisiologia , Percepção Auditiva/fisiologia , Cegueira/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
2.
J Neurophysiol ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722742

RESUMO

Following spinal cord injury (SCI) task-dependent modulation of spinal reflexes are often impaired. To gain insight into the state of the spinal interneuronal pathways following injury, we studied the amplitude modulation of triceps surae cutaneous reflexes to non-noxious stimuli during standing and early-to-mid stance phase of walking in participants with and without chronic incomplete SCI. Reflex eliciting nerve stimulation was delivered to the superficial peroneal, sural, and distal tibial nerves about the ankle. Reflexes were analyzed in the short (SLR, 50-80 ms post stimulation onset) and the medium (MLR, 80-120 ms) latency response windows. Further, the relation between cutaneous and H-reflexes was also examined during standing. In participants without injuries the soleus SLR was modulated task-dependently with nerve specificity, and the soleus and medial gastrocnemius MLRs were modulated task-dependently. In contrast, participants with SCI, no task-dependent or nerve-specific modulation of triceps cutaneous reflexes was observed. The triceps surae cutaneous and H-reflexes were not correlated in either group (r = 0.01-0.37). The presence of cutaneous reflexes but the absence of significant amplitude modulation may suggest impaired function of spinal interneuronal pathways in this population. The lack of correlation between the cutaneous and H-reflexes may suggest that interneurons that are involved in H-reflex modulation and cutaneous reflex modulation do not receive common input, or the impact of the common input is outweighed by other input. Present findings highlight the importance of examining multiple spinal reflexes to better understanding spinal interneuronal pathways that affect motor control in people after SCI.

3.
J Neurosci ; 41(15): 3531-3544, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33687964

RESUMO

Choosing an action in response to visual cues relies on cognitive processes, such as perception, evaluation, and prediction, which can modulate visual representations even at early processing stages. In the mouse, it is challenging to isolate cognitive modulations of sensory signals because concurrent overt behavior patterns, such as locomotion, can also have brainwide influences. To address this challenge, we designed a task, in which head-fixed mice had to evaluate one of two visual cues. While their global shape signaled the opportunity to earn reward, the cues provided equivalent local stimulation to receptive fields of neurons in primary visual (V1) and anterior cingulate cortex (ACC). We found that mice evaluated these cues within few hundred milliseconds. During this period, ∼30% of V1 neurons became cue-selective, with preferences for either cue being balanced across the recorded population. This selectivity emerged in response to the behavioral demands because the same neurons could not discriminate the cues in sensory control measurements. In ACC, cue evaluation affected a similar fraction of neurons; emerging selectivity, however, was stronger than in V1, and preferences in the recorded population were biased toward the cue promising reward. Such a biased selectivity regime might allow the mouse to infer the promise of reward simply by the overall level of activity. Together, these experiments isolate the impact of task demands on neural responses in mouse cerebral cortex, and document distinct neural signatures of cue evaluation in V1 and ACC.SIGNIFICANCE STATEMENT Performing a cognitive task, such as evaluating visual cues, not only recruits frontal and parietal brain regions, but also modulates sensory processing stages. We trained mice to evaluate two visual cues, and show that, during this task, ∼30% of neurons recorded in V1 became selective for either cue, although they provided equivalent visual stimulation. We also show that, during cue evaluation, mice frequently move their eyes, even under head fixation, and that ignoring systematic differences in eye position can substantially obscure the modulations seen in V1 neurons. Finally, we document that modulations are stronger in ACC, and biased toward the reward-predicting cue, suggesting a transition in the neural representation of task-relevant information across processing stages in mouse cerebral cortex.


Assuntos
Sinais (Psicologia) , Discriminação Psicológica , Giro do Cíngulo/fisiologia , Córtex Visual/fisiologia , Percepção Visual , Animais , Feminino , Giro do Cíngulo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Tempo de Reação , Recompensa , Córtex Visual/citologia
4.
Cogn Affect Behav Neurosci ; 22(5): 904-951, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35589909

RESUMO

This integrative review rearticulates the notion of human aesthetics by critically appraising the conventional definitions, offerring a new, more comprehensive definition, and identifying the fundamental components associated with it. It intends to advance holistic understanding of the notion by differentiating aesthetic perception from basic perceptual recognition, and by characterizing these concepts from the perspective of information processing in both visual and nonvisual modalities. To this end, we analyze the dissociative nature of information processing in the brain, introducing a novel local-global integrative model that differentiates aesthetic processing from basic perceptual processing. This model builds on the current state of the art in visual aesthetics as well as newer propositions about nonvisual aesthetics. This model comprises two analytic channels: aesthetics-only channel and perception-to-aesthetics channel. The aesthetics-only channel primarily involves restricted local processing for quality or richness (e.g., attractiveness, beauty/prettiness, elegance, sublimeness, catchiness, hedonic value) analysis, whereas the perception-to-aesthetics channel involves global/extended local processing for basic feature analysis, followed by restricted local processing for quality or richness analysis. We contend that aesthetic processing operates independently of basic perceptual processing, but not independently of cognitive processing. We further conjecture that there might be a common faculty, labeled as aesthetic cognition faculty, in the human brain for all sensory aesthetics albeit other parts of the brain can also be activated because of basic sensory processing prior to aesthetic processing, particularly during the operation of the second channel. This generalized model can account not only for simple and pure aesthetic experiences but for partial and complex aesthetic experiences as well.


Assuntos
Beleza , Cognição , Encéfalo , Estética , Humanos , Percepção
5.
Eur J Appl Physiol ; 122(6): 1367-1381, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35226169

RESUMO

It is clear from non-human animal work that spinal motoneurones undergo endurance training (chronic) and locomotor (acute) related changes in their electrical properties and thus their ability to fire action potentials in response to synaptic input. The functional implications of these changes, however, are speculative. In humans, data suggests that similar chronic and acute changes in motoneurone excitability may occur, though the work is limited due to technical constraints. To examine the potential influence of chronic changes in human motoneurone excitability on the acute changes that occur during locomotor output, we must develop more sophisticated recording techniques or adapt our current methods. In this review, we briefly discuss chronic and acute changes in motoneurone excitability arising from non-human and human work. We then discuss the potential interaction effects of chronic and acute changes in motoneurone excitability and the potential impact on locomotor output. Finally, we discuss the use of high-density surface electromyogram recordings to examine human motor unit firing patterns and thus, indirectly, motoneurone excitability. The assessment of single motor units from high-density recording is mainly limited to tonic motor outputs and minimally dynamic motor output such as postural sway. Adapting this technology for use during locomotor outputs would allow us to gain a better understanding of the potential functional implications of endurance training-induced changes in human motoneurone excitability on motor output.


Assuntos
Treino Aeróbico , Aclimatação , Potenciais de Ação , Animais , Humanos , Neurônios Motores/fisiologia , Coluna Vertebral
6.
Sensors (Basel) ; 22(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35684888

RESUMO

Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior to task execution, for which we need efficient algorithms, especially in the case of flexible robot applications. To provide accurate and physically consistent information about the maximum kinematic capabilities while considering the requirements of the task, an approach called the Decomposed Twist Feasibility (DTF) method is proposed in this study. The evaluation of the maximum feasible end-effector velocity is based on the idea of decomposition into the linear and angular motion capabilities, considering a typical robot machining task with synchronous linear and angular motion. The proposed DTF method is presented by the well-known manipulability polytope concept. Unlike the existing methods that estimate the kinematic performance capabilities in arbitrarily weighted twist space, or separately in the translation and the rotation subspace, our approach offers an accurate and simple solution for the determination of the total kinematic performance capabilities, which is often highly required, especially in the case of robot machining tasks. The numerical results obtained in this study show the effectiveness of the proposed approach. Moreover, the proposed DTF method could represent suitable kinematic performance criteria for the optimal placement of predefined tasks within the robot workspace.


Assuntos
Robótica , Algoritmos , Fenômenos Biomecânicos , Movimento (Física)
7.
J Neurosci ; 40(41): 7877-7886, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32900836

RESUMO

Temporal expectations enable anticipatory brain states that prepare us for upcoming perception and action. We investigated the purpose-dependent nature and consequences of cued temporal expectations on brain and behavior in male and female human volunteers, using two matched visual-motor tasks that stressed either response speed or visual accuracy. We show that the consequences of temporal expectations are fundamentally purpose dependent. Temporal expectations predominantly affected response times when visual demands were low and speed was more important, but perceptual accuracy when visual demands were more challenging. Using magnetoencephalography, we further show how temporal expectations latch onto anticipatory neural states associated with concurrent spatial expectations-modulating task-specific anticipatory neural lateralization of oscillatory brain activity in a modality- and frequency-specific manner. By relating these brain states to behavior, we finally reveal how the behavioral relevance of such anticipatory brain states is similarly purpose dependent.SIGNIFICANCE STATEMENT Knowing when events may occur helps to prepare neural activity for upcoming perception and action. It is becoming increasingly clear that distinct sources of temporal expectations may facilitate performance via distinct mechanisms. Another relevant dimension to consider regards the distinct purposes that temporal expectations may serve. Here, we demonstrate that the consequences of temporal expectations on neurophysiological brain activity and behavior are fundamentally purpose dependent, and show how temporal expectations interact with task-relevant neural states in a modality- and frequency-specific manner. This brings the important insight that the ways in which temporal expectations influence brain and behavior, and how brain activity is related to behavior, are not fixed properties but rather depend on the task at hand.


Assuntos
Antecipação Psicológica/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Ritmo beta , Encéfalo/fisiologia , Sinais (Psicologia) , Feminino , Lateralidade Funcional , Humanos , Magnetoencefalografia , Masculino , Motivação , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção Espacial , Adulto Jovem
8.
Neuroimage ; 206: 116334, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704295

RESUMO

Executive function (EF) refers as to a set of high-level cognitive abilities that are critical to many aspects of daily life. Despite its importance in human daily life, the neural networks responsible for the development of EF in childhood are not well understood. The present study thus aimed to examine the development of task-dependent brain network organization and its relationship to age-related improvements in EF. To address this issue, we recruited eighty-eight Chinese children ranging in age from 7 to 12 years old, and collected their functional magnetic resonance imaging (fMRI) data when they performed an EF task. By utilizing graph theory, we found that the task-dependent brain network modules became increasingly segregated with age. Specifically, the intra-module connections within the default-mode network (DMN), frontal-parietal network (FPN) and sensorimotor network (SMN) increased significantly with age. In contrast, the inter-module connections of the visual network to both the FPN/SMN decreased significantly with age. Most importantly, modular segregation of the FPN significantly mediated the relationship between age and EF performance. These findings add to our growing understanding of how development changes in task-dependent brain network organization support vast behavioral improvements in EF observed during childhood.


Assuntos
Encéfalo/diagnóstico por imagem , Desenvolvimento Infantil/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Função Executiva/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Criança , Rede de Modo Padrão/crescimento & desenvolvimento , Rede de Modo Padrão/fisiologia , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/crescimento & desenvolvimento , Lobo Frontal/fisiologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/crescimento & desenvolvimento , Lobo Parietal/fisiologia , Tempo de Reação , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/crescimento & desenvolvimento , Córtex Sensório-Motor/fisiologia
9.
Hum Brain Mapp ; 40(6): 1760-1773, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30536788

RESUMO

Interoception involves the processing of a variety of different types of information ascending from the body. Accumulating evidence has indicated that interoception plays a fundamental role in cognitive and emotional processes, such as anxiety, but how different functional connectivity patterns contribute to emotions and visceral feelings during an interoceptive attention state is still unclear. In the present study, an interoceptive attention task was performed during functional magnetic resonance imaging of healthy subjects, and the participants' subjective ratings of the intensity of interoception and feelings of anxiety were recorded. Several network nodes were selected, based on previous studies, to construct task-dependent functional connectivity patterns, which were processed by support vector regression to predict the corresponding feeling scores. The results showed that for interoception, the cingulo-opercular task control network provided the greatest contribution, whereas the most important feature for anxiety was the connections between the sensorimotor area (SSM) and the salience network (SN). There existed four overlapping connections between the two predictions: two negative connections between the default mode network (DMN) and the SSM, one negative connection between the DMN and the SN, and one positive connection between the ventral attention network and the SN; this overlap might suggest common bodily attention processing that is involved in both interoception and anxiety. This study remediates the lack of network-level biomarkers of interoception and provides a reference at the level of the brain for further understanding anxiety from an interoceptive perspective.


Assuntos
Ansiedade/fisiopatologia , Atenção/fisiologia , Encéfalo/fisiopatologia , Interocepção/fisiologia , Rede Nervosa/fisiopatologia , Adolescente , Ansiedade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
10.
Exp Brain Res ; 237(9): 2145-2154, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31203402

RESUMO

We have previously shown that supraspinal excitability is higher during arm cycling than a position- and intensity-matched tonic contraction. The present study sought to determine if short-interval intracortical inhibition (SICI) was present during arm cycling and if so, if the amount of SICI was different from an intensity-matched tonic contraction. SICI was assessed using conditioning stimuli (CS) of 70 and 90% of active motor threshold (AMT) and a test stimulus (TS) of 120% AMT at an interstimulus interval (ISI) of 2.5 ms. SICI was elicited in all participants; on average (i.e., cycling and tonic contraction grouped) test MEP amplitudes were reduced by 64.2% (p < 0.001) and 62.8% (p = 0.001) following conditioning stimuli of 70% and 90% AMT, respectively. There was no significant difference in extent of SICI between tasks (p = 0.360). These data represent the novel finding that SICI is present during arm cycling, a motor output partially mediated by spinal interneuronal networks. The amount of SICI, however, was not different from that during a position- and intensity-matched tonic contraction, suggesting that SICI is not likely a cortical mechanism contributing to higher supraspinal excitability during arm cycling compared to tonic contraction.


Assuntos
Braço/fisiologia , Córtex Cerebral/fisiologia , Potencial Evocado Motor/fisiologia , Atividade Motora/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Inibição Neural/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana , Adulto Jovem
11.
J Neurosci ; 37(45): 10826-10834, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118211

RESUMO

A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field.


Assuntos
Movimento/fisiologia , Sensação/fisiologia , Atenção/fisiologia , Cognição/fisiologia , Humanos , Locomoção/fisiologia
12.
Neuroimage ; 149: 244-255, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28163139

RESUMO

Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner.


Assuntos
Encéfalo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Fonética , Leitura , Semântica , Adulto Jovem
13.
J Neurophysiol ; 117(3): 1070-1083, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003415

RESUMO

An important aspect of motor control is the ability to perform tasks with the upper limbs while maintaining whole body balance. However, little is known about the coordination of upper limb voluntary and whole body postural control after mechanical disturbances that require both upper limb motor corrections to attain a behavioral goal and lower limb motor responses to maintain whole body balance. The present study identified the temporal organization of muscle responses and center of pressure (COP) changes following mechanical perturbations during reaching. Our results demonstrate that muscle responses in the upper limb are evoked first (∼50 ms), with lower limb muscle activity occurring immediately after, in as little as ∼60 ms after perturbation. Hand motion was immediately altered by the load, while COP changes occurred after ∼100 ms, when lower limb muscle activity was already present. Our secondary findings showed that both muscle activity and COP changes were influenced by behavioral context (by altering target shape, circle vs. rectangle). Voluntary and postural actions initially directed the hand toward the center of both target types, but after the perturbation upper limb and postural responses redirected the hand toward different spatial locations along the rectangle. Muscle activity was increased for both upper and lower limbs when correcting to the circle vs. the rectangle, and these differences emerged as early as the long-latency epoch (∼75-120 ms). Our results demonstrate that postural responses are rapidly and flexibly altered to consider the behavioral goal of the upper limb.NEW & NOTEWORTHY The present work establishes that, when reaching to a target while standing, perturbations applied to the upper limb elicit a rapid response in lower limb muscles. Unlike voluntary movements, postural responses do not occur before corrections of the upper limb. We show the first evidence that corrective postural adjustments are modulated by upper limb behavioral context (target shape). Importantly, this indicates that postural responses take into account upper limb feedback for online control.


Assuntos
Objetivos , Atividade Motora , Equilíbrio Postural , Desempenho Psicomotor , Extremidade Superior/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Extremidade Inferior/fisiologia , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
14.
J Neurophysiol ; 111(1): 62-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24108792

RESUMO

Sensory systems provide abundant information about the environment surrounding an animal, but only a small fraction of that information is relevant for any given task. One example of this requirement for context-dependent filtering of a sensory stream is the role that optic flow plays in guiding locomotion. Flying animals, which do not have access to a direct measure of ground speed, rely on optic flow to regulate their forward velocity. This observation suggests that progressive optic flow, the pattern of front-to-back motion on the retina created by forward motion, should be especially salient to an animal while it is in flight, but less important while it is standing still. We recorded the activity of cells in the central complex of Drosophila melanogaster during quiescence and tethered flight using both calcium imaging and whole cell patch-clamp techniques. We observed a genetically identified set of neurons in the fan-shaped body that are unresponsive to visual motion while the animal is quiescent. During flight their baseline activity increases, and they respond to front-to-back motion with changes relative to this baseline. The results provide an example of how nervous systems selectively respond to complex sensory stimuli depending on the current behavioral state of the animal.


Assuntos
Drosophila melanogaster/fisiologia , Gânglios dos Invertebrados/fisiologia , Locomoção , Neurônios/fisiologia , Fluxo Óptico , Filtro Sensorial , Potenciais de Ação , Animais , Cálcio/metabolismo , Potenciais Evocados Visuais , Gânglios dos Invertebrados/citologia , Retina/fisiologia
15.
Hum Brain Mapp ; 35(8): 3788-804, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24382835

RESUMO

Recent studies have shown that aging has a large impact on connectivity within and between functional networks. An open question is whether elderly still have the flexibility to adapt functional network connectivity (FNC) to the demands of the task at hand. To study this, we collected fMRI data in younger and older participants during resting state, a selective attention (SA) task and an n-back working memory task with varying levels of difficulty. Spatial independent component (IC) analysis was used to identify functional networks over all participants and all conditions. Dual regression was used to obtain participant and task specific time-courses per IC. Subsequently, functional connectivity was computed between all ICs in each of the tasks. Based on these functional connectivity matrices, a scaled version of the eigenvector centrality (SEC) was used to measure the total influence of each IC in the complete graph of ICs. The results demonstrated that elderly remain able to adapt FNC to task demands. However, there was an age-related shift in the impetus for FNC change. Older participants showed the maximal change in SEC patterns between resting state and the SA task. Young participants, showed the largest shift in SEC patterns between the less demanding SA task and the more demanding 2-back task. Our results suggest that increased FNC changes from resting state to low demanding tasks in elderly reflect recruitment of additional resources, compared with young adults. The lack of change between the low and high demanding tasks suggests that elderly reach a resource ceiling.


Assuntos
Envelhecimento/fisiologia , Atenção/fisiologia , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Adaptação Psicológica/fisiologia , Adolescente , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Testes Neuropsicológicos , Descanso , Processamento de Sinais Assistido por Computador , Adulto Jovem
16.
J Vis ; 14(8): 10, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25015385

RESUMO

Memorizing critical objects and their locations is an essential part of everyday life. In the present study, incidental encoding of objects in naturalistic scenes during search was compared to explicit memorization of those scenes. To investigate if prior knowledge of scene structure influences these two types of encoding differently, we used meaningless arrays of objects as well as objects in real-world, semantically meaningful images. Surprisingly, when participants were asked to recall scenes, their memory performance was markedly better for searched objects than for objects they had explicitly tried to memorize, even though participants in the search condition were not explicitly asked to memorize objects. This finding held true even when objects were observed for an equal amount of time in both conditions. Critically, the recall benefit for searched over memorized objects in scenes was eliminated when objects were presented on uniform, non-scene backgrounds rather than in a full scene context. Thus, scene semantics not only help us search for objects in naturalistic scenes, but appear to produce a representation that supports our memory for those objects beyond intentional memorization.


Assuntos
Memória de Longo Prazo/fisiologia , Rememoração Mental/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Visual/fisiologia , Adulto , Visão de Cores/fisiologia , Movimentos Oculares/fisiologia , Feminino , Humanos , Masculino , Semântica , Acuidade Visual/fisiologia
17.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176905

RESUMO

Besides controlling eye movements, the brain's oculomotor system has been implicated in the control of covert spatial attention and the rehearsal of spatial information in working memory. We investigated whether the oculomotor system also contributes to rehearsing visual objects in working memory when object location is never asked about. To address this, we tracked the incidental use of locations for mnemonic rehearsal via directional biases in microsaccades while participants maintained two visual objects (colored oriented gratings) in working memory. By varying the stimulus configuration (horizontal, diagonal, and vertical) at encoding, we could quantify whether microsaccades were more aligned with the configurational axis of the memory contents, as opposed to the orthogonal axis. Experiment 1 revealed that microsaccades continued to be biased along the axis of the memory content several seconds into the working memory delay. In Experiment 2, we confirmed that this directional microsaccade bias was specific to memory demands, ruling out lingering effects from passive and attentive encoding of the same visual objects in the same configurations. Thus, by studying microsaccade directions, we uncover oculomotor-driven rehearsal of visual objects in working memory through their associated locations.


Assuntos
Memória de Curto Prazo , Percepção Espacial , Humanos , Movimentos Oculares , Atenção , Percepção Visual , Movimentos Sacádicos
18.
Front Syst Neurosci ; 17: 1049062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846499

RESUMO

Higher mammals are able to simultaneously learn and perform a wide array of complex behaviors, which raises questions about how the neural representations of multiple tasks coexist within the same neural network. Do neurons play invariant roles across different tasks? Alternatively, do the same neurons play different roles in different tasks? To address these questions, we examined neuronal activity in the posterior medial prefrontal cortex of primates while they were performing two versions of arm-reaching tasks that required the selection of multiple behavioral tactics (i.e., the internal protocol of action selection), a critical requirement for the activation of this area. During the performance of these tasks, neurons in the pmPFC exhibited selective activity for the tactics, visuospatial information, action, or their combination. Surprisingly, in 82% of the tactics-selective neurons, the selective activity appeared in a particular task but not in both. Such task-specific neuronal representation appeared in 72% of the action-selective neurons. In addition, 95% of the neurons representing visuospatial information showed such activity exclusively in one task but not in both. Our findings indicate that the same neurons can play different roles across different tasks even though the tasks require common information, supporting the latter hypothesis.

19.
Front Sports Act Living ; 5: 1177004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576608

RESUMO

Beta-band (15-30 Hz) synchronization between the EMG signals of active limb muscles can serve as a non-invasive assay of corticospinal tract integrity. Tasks engaging a single limb often primarily utilize one corticospinal pathway, although bilateral neural circuits can participate in goal-directed actions involving multi-muscle coordination and utilization of feedback. Suboptimal utilization of such circuits after CNS injury can result in unintended mirror movements and activation of pathological synergies. Accordingly, it is important to understand how the actions of one limb (e.g., a less-affected limb after strokes) influence the opposite corticospinal pathway for the rehabilitation target. Certain unimanual actions decrease the excitability of the "unengaged" corticospinal tract, presumably to prevent mirror movement, but there is no direct way to predict the extent to which this will occur. In this study, we tested the hypothesis that task-dependent changes in beta-band drives to muscles of one hand will inversely correlate with changes in the opposite corticospinal tract excitability. Ten participants completed spring pinching tasks known to induce differential 15-30 Hz drive to muscles. During compressions, transcranial magnetic stimulation single pulses to the ipsilateral M1 were delivered to generate motor-evoked potentials in the unengaged hand. The task-induced changes in ipsilateral corticospinal excitability were inversely correlated with associated changes in EMG-EMG coherence of the task hand. These results demonstrate a novel connection between intermuscular coherence and the excitability of the "unengaged" corticospinal tract and provide a springboard for further mechanistic studies of unimanual tasks of varying difficulty and their effects on neural pathways relevant to rehabilitation.

20.
Brain Res ; 1775: 147739, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843702

RESUMO

Selective listening to speech depends on widespread networks of the brain, but how the involvement of different neural systems in speech processing is affected by factors such as the task performed by a listener and speech intelligibility remains poorly understood. We used functional magnetic resonance imaging to systematically examine the effects that performing different tasks has on neural activations during selective attention to continuous audiovisual speech in the presence of task-irrelevant speech. Participants viewed audiovisual dialogues and attended either to the semantic or the phonological content of speech, or ignored speech altogether and performed a visual control task. The tasks were factorially combined with good and poor auditory and visual speech qualities. Selective attention to speech engaged superior temporal regions and the left inferior frontal gyrus regardless of the task. Frontoparietal regions implicated in selective auditory attention to simple sounds (e.g., tones, syllables) were not engaged by the semantic task, suggesting that this network may not be not as crucial when attending to continuous speech. The medial orbitofrontal cortex, implicated in social cognition, was most activated by the semantic task. Activity levels during the phonological task in the left prefrontal, premotor, and secondary somatosensory regions had a distinct temporal profile as well as the highest overall activity, possibly relating to the role of the dorsal speech processing stream in sub-lexical processing. Our results demonstrate that the task type influences neural activations during selective attention to speech, and emphasize the importance of ecologically valid experimental designs.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Córtex Cerebral/diagnóstico por imagem , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Córtex Cerebral/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa