Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893328

RESUMO

Taste sensors with an allostery approach have been studied to detect non-charged bitter substances, such as xanthine derivatives, used in foods (e.g., caffeine) or pharmaceuticals (e.g., etofylline). In this study, the authors modified a taste sensor with 3-bromo-2,6-dihydroxybenzoic acid and used it in conjunction with sensory tests to assess the bitterness of non-charged pharmaceuticals with xanthine scaffolds (i.e., acefylline and doxofylline), as well as allopurinol, an analogue of hypoxanthine. The results show that the sensor was able to differentiate between different levels of sample bitterness. For instance, when assessing a 30 mM sample solution, the sensor response to acefylline was 34.24 mV, which corresponded to the highest level of bitterness (τ = 3.50), while the response to allopurinol was lowest at 2.72 mV, corresponding to relatively weaker bitterness (τ = 0.50). Additionally, this study extended the application of the sensor to detect pentoxifylline, an active pharmaceutical ingredient in pediatric medicines. These results underscore the taste sensor's value as an additional tool for early-stage assessment and prediction of bitterness in non-charged pharmaceuticals.


Assuntos
Alopurinol , Paladar , Xantina , Alopurinol/química , Humanos , Xantina/química , Técnicas Biossensoriais/métodos
2.
J Food Sci Technol ; 61(6): 1126-1137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562596

RESUMO

Herein, a novel voltammetry taste sensor array (VTSA) using pencil graphite electrode, screen-printed electrode, and glassy carbon electrode was used to identify heavy metals (HM) including Cad, Pb, Sn and Ni in soybean and rapeseed oils. HMs were added to edible oils at three concentrations of 0.05, 0.1 and 0.25 ppm, and then, the output of the device was classified using a chemometric classification method. According to the principal component analysis results, PG electrode explains 96% and 81% of the variance between the data in rapeseed and soybean edible oils, respectively. Additionally, the SP electrode explains 91% of the variance between the data in rapeseed and soybean oils. Moreover, the GC electrode explains 100% and 99% of the variance between the data in rapeseed and soybean edible oils, respectively. K-nearest neighbor exhibited high capability in classifying HMs in edible oils. In addition, partial least squares in the combine of VTSA shows a predict 99% in rapeseed oil. The best electrode for soybean edible oil was GC.

3.
Biosci Biotechnol Biochem ; 87(8): 890-897, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37156505

RESUMO

Taste is an essential factor for evaluating the quality of agricultural products. However, it is usually difficult to compare data acquired at different times or by different people because there is no invariant reference and because the evaluation methods are largely subjective. Here, we addressed these problems by developing a method for standardizing strawberry sourness and sweetness intensities using a taste sensor approach with a taste standard solution composed of sour and sweet compounds. This standard solution allows highly efficient sensor measurements because it contains the standard compounds citric acid and sucrose. In addition, we found that polyphenol destabilized the sensor response for strawberry sweetness, and its removal from the sample by appropriate treatment with polyvinylpolypyrrolidone allowed stable evaluation of the sweetness intensity. The taste sensor data obtained using this method were in good agreement with the chemical analysis values related to human sensory evaluation.


Assuntos
Fragaria , Frutas , Fragaria/química , Paladar , Frutas/química , Polifenóis/análise , Açúcares/análise , Padrões de Referência
4.
Chem Pharm Bull (Tokyo) ; 71(3): 198-205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858524

RESUMO

The purpose of the present study was to evaluate bitterness suppression effect of adenylic acid (AMP) as a nucleotide-derived nutrient enhancer on a bitter commercial drug. In the present study, we evaluated peripheral bitterness inhibition effect of AMP on the trimethoprim (TMP) and sulfamethoxazole (SMZ) combination formulation based on taste sensor. The taste sensor values of TMP solutions with different concentrations show large sensor output in correlation with the concentration of TMP, whereas no sensor output in shown for the SMZ solutions. Therefore, the bitterness of this combination formulation is mainly due to TMP. We evaluated the TMP bitterness inhibitory effects of AMP, sodium salt of AMP (AMP Na; sodium adenylate), sodium salt of GMP (GMP Na; sodium guanylate), and sodium salt of inosine monophosphate (IMP Na; sodium inosinate), and found that only AMP displayed very effective bitterness inhibition. MarvinSketch analysis revealed that potential electrostatic interaction between cationized TMP and anionized forms (II and III) of AMP may cause bitterness suppression. 1H-NMR study suggested an interaction of TMP and AMP molecules based on chemical shift perturbations and an interaction between the phosphate group of AMP and amino group of TMP. Lastly, conventional elution analysis simulating oral cavity capacity for up to one minute were performed using commercial TMP/SMZ combination granules. The sensor output gradually increased up to 60 s. The addition of AMP solution to the eluted sample at 60 s significantly decreased the bitterness sensor output of the eluted sample.


Assuntos
Paladar , Combinação Trimetoprima e Sulfametoxazol , Monofosfato de Adenosina , Antibacterianos , Combinação de Medicamentos
5.
Chem Pharm Bull (Tokyo) ; 71(8): 670-674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532538

RESUMO

This study developed easy-to-consume bitter taste-masking granules for the preparation of instant jelly formulations. Composite granules containing diphenhydramine hydrochloride (DPH) and polymers were prepared via spray drying. The taste-masking effect on DPH was evaluated with acceptable linearity between DPH concentration and intensity of bitterness using an electronic tongue sensor. The results indicated that ι-carrageenan could provide the greatest suppression effect on the DPH bitterness among the polymers selected for preparing spray-dried particles (SDPs). The thixotropic index (TI) of ι-carrageenan was higher than that of the other polymers. In addition, two sulfate groups per two galactose molecules in one unit of ι-carrageenan improved interaction with DPH. Compared to κ-carrageenan, the electrostatic interaction with DPH may be stronger. Easy-to-consume SDPs with ι-carrageenan were used to prepare instant jelly formulations. The instant jelly formulation containing DPH with ι-carrageenan (3.0%) met the criteria for texture properties (hardness, adhesiveness, and cohesiveness) for patients with difficulty swallowing, as specified by the Consumer Affairs Agency. Furthermore, instant jelly enhanced the bitter taste suppression of DPH. Overall, using spray-dried granules with ι-carrageenan, this technique for preparing instant jelly formulations is simple and inhibits the bitter taste of drugs, contributing to the development of oral dosage forms suitable for patients of all ages.


Assuntos
Difenidramina , Paladar , Humanos , Difenidramina/química , Carragenina/farmacologia , Polímeros , Secagem por Atomização
6.
Chem Pharm Bull (Tokyo) ; 71(2): 148-153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724977

RESUMO

This study aimed to evaluate the bitterness of famotidine (FAM) combined with each of three non-steroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU), flurbiprofen (FLU), and naproxen (NAP), which have potential as fixed-dose combination (FDC) drugs. We evaluated the bitterness of FAM and each NSAID by taste sensor AN0 and C00, respectively. FAM showed high sensor output representing sensitivity to bitterness, whereas three NSAIDs did not show large sensor output, suggesting that the bitterness intensities of three NSAIDs were lower than that of FAM. The bitterness of FAM on sensor AN0 was suppressed in a concentration-dependent manner when mixed with IBU, FLU, or NAP. Among three NSAIDs, IBU most effectively inhibited bitterness on sensor output, and the gustatory sensation test confirmed that adding IBU to FAM reduced the bitterness of FAM in a concentration-dependent manner. MarvinSketch confirmed that the drugs were mostly present in an ionic solution when FAM was mixed with NSAIDs. The 1H-NMR spectroscopy analysis also revealed the presence of electrostatic interactions between FAM and NSAIDs, suggesting that the electrostatic interaction between FAM and NSAIDs might inhibit the adsorption of FAM on the bitter taste sensor membrane, thereby masking the bitter taste.


Assuntos
Flurbiprofeno , Paladar , Famotidina/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Ibuprofeno/farmacologia , Naproxeno
7.
Proc Jpn Acad Ser B Phys Biol Sci ; 99(6): 173-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37331815

RESUMO

Gustatory and olfactory receptors receive multiple chemical substances of different types simultaneously, but they can barely discriminate one chemical species from others. In this article, we describe a device used to measure taste, i.e., taste sensors. Toko and colleagues developed a taste sensor equipped with multiarray electrodes using a lipid/polymer membrane as the transducer in 1989. This sensor has a concept of global selectivity to decompose the characteristics of a chemical substance into taste qualities and to quantify them. The use of taste sensors has spread around the world. More than 600 examples of taste-sensing system have been used, while providing the first "taste scale" in the world. This article explains the principle of taste sensors and their application to foods and medicines, and also a novel type of taste sensor using allostery. Taste-sensor technology, the underlying principle of which is different from that of conventional analytical instruments, markedly affects many aspects including social economy as well as the food industry.


Assuntos
Técnicas Biossensoriais , Paladar , Eletrodos , Pesquisa
8.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991892

RESUMO

The saltiness enhancement effect can be produced by adding specific substances to dietary salt (sodium chloride). This effect has been used in salt-reduced food to help people forge healthy eating habits. Therefore, it is necessary to objectively evaluate the saltiness of food based on this effect. In a previous study, sensor electrodes based on lipid/polymer membrane with Na+ ionophore have been proposed to quantify the saltiness enhanced by branched-chain amino acids (BCAAs), citric acid, and tartaric acid. In this study, we developed a new saltiness sensor with the lipid/polymer membrane to quantify the saltiness enhancement effect of quinine by replacing a lipid that caused an unexpected initial drop in the previous study with another new lipid. As a result, the concentrations of lipid and ionophore were optimized to produce an expected response. Logarithmic responses have been found on both NaCl samples and quinine-added NaCl samples. The findings indicate the usage of lipid/polymer membranes on novel taste sensors to evaluate the saltiness enhancement effect accurately.

9.
Sensors (Basel) ; 23(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836980

RESUMO

Currently, taste sensors utilizing lipid polymer membranes are utilized to assess the taste of food products quantitatively. During this process, it is crucial to identify and quantify basic tastes, e.g., sourness and sweetness, while ensuring that there is no response to tasteless substances. For instance, suppression of responses to anions, like tasteless NO3- ions contained in vegetables, is essential. However, systematic electrochemical investigations have not been made to achieve this goal. In this study, we fabricated three positively charged lipid polymer membranes containing oleylamine (OAm), trioctylemethylammonium chloride (TOMACl), or tetradodecylammonium bromide (TDAB) as lipids, and sensors that consist of these membranes to investigate the potential change characteristics of these sensors in solutions containing different anions (F-, Cl-, Br-, NO3-, I-). The ability of each anion solution to reduce the positive charge on membranes and shift the membrane potential in the negative direction was in the following order: I- > NO3- > Br- > Cl- > F-. This order well reflected the order of size of the hydrated ions, related to their hydration energy. Additionally, the OAm sensor displayed low ion selectivity, whereas the TOMACl and TDAB sensors showed high ion selectivity related to the OAm sensor. Such features in ion selectivity are suggested to be due to the variation in positive charge with the pH of the environment and packing density of the OAm molecule in the case of the OAm sensor and due to the strong and constant positive charge created by complete ionization of lipids in the case of TOMACl and TDAB sensors. Furthermore, it was revealed that the ion selectivity varies by changing the lipid concentration in each membrane. These results contribute to developing sensor membranes that respond to different anion species selectively and creating taste sensors capable of suppressing responses to tasteless anions.

10.
Sensors (Basel) ; 22(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214507

RESUMO

A taste sensor with lipid/polymer membranes can objectively evaluate taste. As previously reported, caffeine can be detected electrically using lipid/polymer membranes modified with hydroxybenzoic acids (HBAs). However, a systematic understanding of how HBAs contribute to caffeine detection is still lacking. In this study, we used various HBAs such as 2,6-dihydroxybenzoic acid (2,6-DHBA) to modify lipid/polymer membranes, and we detected caffeine using a taste sensor with the modified membranes. The effect of the concentrations of the HBAs on caffeine detection was also discussed. The results of the caffeine detection indicated that the response to caffeine and the reference potential measured in a reference solution were affected by the log P and pKa of HBAs. Furthermore, the taste sensor displayed high sensitivity to caffeine when the reference potential was adjusted to an appropriate range by modification with 2,6-DHBA, where the slope of the change in reference potential with increasing 2,6-DHBA concentration was steep. This is helpful in order to improve the sensitivity of taste sensors to other taste substances, such as theophylline and theobromine, in the future.


Assuntos
Cafeína , Paladar , Hidroxibenzoatos , Lipídeos , Polímeros , Paladar/fisiologia
11.
Sensors (Basel) ; 22(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408206

RESUMO

A taste sensor with lipid/polymer membranes is attracting attention as a method to evaluate taste objectively. However, due to the characteristic of detecting taste by changes in membrane potential, taste sensors cannot measure non-charged bitter substances. Many foods and medicines contain non-charged bitter substances, and it is necessary to quantify these tastes with sensors. Therefore, we have been developing taste sensors to detect bitter tastes caused by non-charged substances such as caffeine. In previous studies, a sensor for detecting bitterness caused by caffeine and theobromine, theophylline, was developed, using a membrane modified with hydroxybenzoic acid (HBA) as the sensing part. The sensor was designed to form intramolecular hydrogen bonds (H-bonds) between the hydroxy group and carboxy group of HBA and to successively cause the intermolecular H-bonds between HBA and caffeine molecules to be measured. However, whether this sensing principle is correct or not cannot be confirmed from the results of taste sensor measurements. Therefore, in this study, we explored the interaction between HBA and caffeine by 1H-nuclear magnetic resonance spectroscopy (NMR). By the 1H NMR detection, we confirmed that both the substances interact with each other. Furthermore, the nuclear Overhauser effect (NOE) of intermolecular spatial conformation in solution was measured, by which 2,6-dihydroxybenzoic acid (2,6-DHBA) preferably interacted with caffeine via the H-bonding and stacking configuration between aromatic rings. Identifying the binding form of 2,6-DHBA to caffeine was estimated to predict how the two substances interact.


Assuntos
Cafeína , Paladar , Cafeína/química , Potenciais da Membrana , Polímeros , Espectroscopia de Prótons por Ressonância Magnética
12.
Compr Rev Food Sci Food Saf ; 21(2): 1462-1490, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201672

RESUMO

Umami is an important element affecting food taste, and the development of umami peptides is a topic of interest in food-flavoring research. The existing technology used for traditional screening of umami peptides is time-consuming and labor-intensive, making it difficult to meet the requirements of high-throughput screening, which limits the rapid development of umami peptides. The difficulty in performing a standard measurement of umami intensity is another problem that restricts the development of umami peptides. The existing methods are not sensitive and specific, making it difficult to achieve a standard evaluation of umami taste. This review summarizes the umami receptors and umami peptides, focusing on the problems restricting the development of umami peptides, high-throughput screening, and establishment of evaluation standards. The rapid screening of umami peptides was realized based on molecular docking technology and a machine learning method, and the standard evaluation of umami could be realized with a bionic taste sensor. The progress of rapid screening and evaluation methods significantly promotes the study of umami peptides and increases its application in the seasoning industry.


Assuntos
Peptídeos , Paladar , Simulação de Acoplamento Molecular , Peptídeos/química
13.
Chem Pharm Bull (Tokyo) ; 69(6): 537-547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34078800

RESUMO

The aim of this study was to evaluate bitterness by using "CCDP; Change in concentration-dependent potential" considering dose-dependency of active pharmaceutical ingredients (APIs) as new and useful bitterness evaluation index compared with bitter sensor output value which is conventional bitterness evaluation index for 48 pediatric medicines from the recent edition of the WHO model list of essential medicines for children (7th edn, 2019). Solutions (0.01, 0.03, 0.1 mM) of the compounds were evaluated by an artificial taste sensor using membranes sensitive to bitterness. The dose-response slope of the sensor outputs was defined as CCDP. On the basis of principal component analysis of CCDPs, chlorpromazine hydrochloride, amitriptyline hydrochloride, propranolol hydrochloride, primaquine phosphate and haloperidol were predicted to express the strongest levels of basic bitterness, surpassing that of quinine hydrochloride. Correlation analysis (Fisher's exact tests and multiple regression analysis) was performed to determine the relation between CCDPs and various physicochemical properties participated in hydrophilicity and hydrophobicity. It is revealed that contribution physicochemical factors are different by individual basic bitterness sensor (AC0, AN0 or BT0), and this result becomes the criterion of the sensor choice to evaluate basic bitterness intensity using basic bitterness sensors. Hydrophobic and hydrophilic interactions could be simulated by ligand docking modeling for haloperidol, miconazole and quinine hydrochloride. The pharmaceutical products need a bitterness evaluation in consideration of concentration-dependency to vary in a dose depending on a patient individual. Thus, it was concluded that CCDP correlated to hydrophilicity and hydrophobicity is useful as a bitterness evaluation index of APIs in pediatric medicines.


Assuntos
Técnicas Biossensoriais , Preparações Farmacêuticas/análise , Paladar , Criança , Humanos , Modelos Moleculares
14.
Sensors (Basel) ; 21(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960437

RESUMO

The lipid phosphoric acid di-n-decyl ester (PADE) has played an important role in the development of taste sensors. As previously reported, however, the concentration of PADE and pH of the solution affected the dissociation of H+, which made the measurement results less accurate and stable. In addition, PADE caused deterioration in the response to bitterness because PADE created the acidic environment in the membrane. To solve these problems, our past study tried to replace the PADE with a completely dissociated substance called tetrakis [3,5-bis (trifluoromethyl) phenyl] borate sodium salt dehydrate (TFPB) as lipid. To find out whether the two substances can be effectively replaced, it is necessary to perform an in-depth study on the properties of the two membranes themselves. In this study, we fabricated two types of membrane electrodes, based on PADE or TFPB, respectively, using 2-nitrophenyl octyl ether (NPOE) as a plasticizer. We measured the selectivity to cations such as Cs+, K+, Na+ and Li+, and also the membrane impedance of the membranes comprising PADE or TFPB of the different concentrations. As a result, we found that any concentration of PADE membranes always had low ion selectivity, while the ion selectivity of TFPB membranes was concentration-dependent, showing increasing ion selectivity with the TFPB concentrations. The ion selectivity order was Cs+>K+>Na+>Li+. The hydration of ions was considered to participate in this phenomenon. In addition, the membrane impedance decreased with increasing PADE and TFPB concentrations, while the magnitudes differed, implying that there is a difference in the dissociation of the two substances. The obtained results will contribute to the development of novel receptive membranes of taste sensors.


Assuntos
Sódio , Paladar , Cátions , Eletrodos , Lítio
15.
Biosci Biotechnol Biochem ; 84(12): 2569-2575, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32772904

RESUMO

To enable the taste evaluation of many food samples at a time as well as the comparison of taste evaluation data acquired at different times, a standardization method for taste intensities was developed by a combination of a taste sensor system and a standard solution prepared with taste substances. In the case of tomato juices, citric acid, sucrose, and monosodium glutamate were used as standard taste substances for sourness, sweetness, and umami taste, respectively. Each standard point of the taste intensities was determined using only one standard solution including these standard substances. The taste intensity was described as a value on a scale based on discrimination thresholds of human gustation, where intensities of sourness, sweetness, and umami taste of the tomato juices were classified into multiple levels. Organoleptic evaluation supported these results. Validation for the present standardization method revealed that this approach has enough precision for practical tomato taste evaluation.


Assuntos
Sucos de Frutas e Vegetais/análise , Solanum lycopersicum/química , Paladar , Padrões de Referência
16.
Chem Pharm Bull (Tokyo) ; 68(3): 234-243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115530

RESUMO

Diphenhydramine, a sedating antihistamine, is an agonist of human bitter taste receptor 14 (hTAS2R14). Diphenhydramine hydrochloride (DPH) was used as a model bitter medicine to evaluate whether the umami dipeptides (Glu-Glu and Asp-Asp) and their constituent amino acids (Glu, Asp) could suppress its bitterness intensity, as measured by human gustatory sensation testing and using the artificial taste sensor. Various concentrated (0.001-5.0 mM) Glu-Glu, Asp-Asp, Glu and Asp significantly suppressed the taste sensor output of 0.5 mM DPH solution in a dose-dependent manner. The effect of umami dipeptides and their constituent amino acids was tending to be ranked as follows, Asp-Asp > Glu-Glu >> Gly-Gly, and Asp > Glu >> Gly (control) respectively. Whereas human bitterness intensity of 0.5 mM DPH solution with various concentrated (0.5, 1.0, 1.5 mM) Glu-Glu, Asp-Asp, Glu and Asp all significantly reduced bitterness intensity of 0.5 mM DPH solution even though no statistical difference was observed among four substances. The taste sensor outputs and the human gustatory sensation test results showed a significant correlation. A surface plasmon resonance study using hTAS2R14 protein and these substances suggested that the affinity of Glu-Glu, Asp-Asp, Glu and Asp for hTAS2R14 protein was greater than that of Gly-Gly or Gly. The results of docking-simulation studies involving DPH, Glu-Glu and Asp-Asp with hTAS2R14, suggested that DPH is able to bind to a space near the binding position of Glu-Glu and Asp-Asp. In conclusion, the umami dipeptides Glu-Glu and Asp-Asp, and their constituent amino acids, can all efficiently suppress the bitterness of DPH.


Assuntos
Aminoácidos/farmacologia , Dipeptídeos/farmacologia , Difenidramina/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Paladar/efeitos dos fármacos , Aminoácidos/química , Dipeptídeos/química , Difenidramina/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Relação Estrutura-Atividade
17.
Sensors (Basel) ; 20(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570946

RESUMO

A taste sensor with lipid/polymer membranes is one of the devices that can evaluate taste objectively. However, the conventional taste sensor cannot measure non-charged bitter substances, such as caffeine contained in coffee, because the taste sensor uses the potentiometric measurement based mainly on change in surface electric charge density of the membrane. In this study, we aimed at the detection of typical non-charged bitter substances such as caffeine, theophylline and theobromine included in beverages and pharmaceutical products. The developed sensor is designed to detect the change in the membrane potential by using a kind of allosteric mechanism of breaking an intramolecular hydrogen bond between the carboxy group and hydroxy group of aromatic carboxylic acid (i.e., hydroxy-, dihydroxy-, and trihydroxybenzoic acids) when non-charged bitter substances are bound to the hydroxy group. As a result of surface modification by immersing the sensor electrode in a modification solution in which 2,6-dihydroxybenzoic acid was dissolved, it was confirmed that the sensor response increased with the concentration of caffeine as well as allied substances. The threshold and increase tendency were consistent with those of human senses. The detection mechanism is discussed by taking into account intramolecular and intermolecular hydrogen bonds, which cause allostery. These findings suggest that it is possible to evaluate bitterness caused by non-charged bitter substances objectively by using the taste sensor with allosteric mechanism.


Assuntos
Cafeína , Paladar , Técnicas Biossensoriais , Humanos , Potenciais da Membrana
18.
Sensors (Basel) ; 20(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936753

RESUMO

We have developed a method to quantify the sweetness of negatively charged high-potency sweeteners coexisting with other taste substances. This kind of sweetness sensor uses lipid polymer membranes as the taste-sensing part. Two types of outputs have been defined in the measurement of the taste sensor: one is the relative value and the other is the CPA (the change in membrane potential caused by adsorption) value. The CPA value shows a good selectivity for high-potency sweeteners. On the other hand, the relative value is several times higher than the CPA value, but the relative value is influenced by salty substances. In order to obtain both high sensitivity and selectivity, we established a model for predicting the concentration of sweeteners with a nonlinear regression analysis method using the relative values of both the sweetness sensor and the saltiness sensor. The analysis results showed good correlations with the estimated concentration of acesulfame potassium coexisting with salty substances, as represented by R2 = 0.99. This model can correspond well to the prediction of acesulfame K in a concentration of 0.2-0.7 mM, which is commonly used in food and beverages. The results obtained in this paper suggest that this method is useful for the evaluation of acesulfame K using the taste sensors.

19.
Chem Pharm Bull (Tokyo) ; 67(12): 1271-1277, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787653

RESUMO

The purpose of this study was to investigate the relationship between response to the bitterness taste sensor and physicochemical parameters of 47 pediatric medicines and to classify these medicines according to the biopharmaceutics classification system (BCS). Forty-seven bitter compounds, most of which were on the WHO model list of essential medicines for children (March 2017), were used in the study. Solutions (0.1 mM) were evaluated by an artificial taste sensor using membranes sensitive to bitterness. On the basis of principal component analysis of taste sensor measurements, chlorpromazine, haloperidol, propranolol, amitriptyline, diphenhydramine were predicted to express the strongest levels of basic bitterness, surpassing that of quinine. Correlation tests between bitter taste sensor outputs and physicochemical properties were then carried out and the compounds classified in terms of their biopharmaceutical properties. High log P values (≥2.82), physiological charge (≥1), low log S values (<-3) and small polar surface area (PSA; <45.59 Å2) were found to correlate significantly with the responses of bitter taste sensors. Forty-one of the 47 compounds could be placed into one of four groups in the BCS, on the basis of dose number (D0), an indicator of solubility which takes into account clinical dosage, and fractional absorption (Fa). For medicines classified in group 4, the factors D0 > 1 and Fa < 0.85 significantly correlated with the responses of the taste sensor for basic bitterness. It was concluded that lipophilicity, physiological charge, solubility, PSA and D0 are the main factors affecting the bitterness of pediatric medicines.


Assuntos
Técnicas Biossensoriais , Composição de Medicamentos , Paladar , Biofarmácia/classificação , Físico-Química , Criança , Humanos
20.
Chem Pharm Bull (Tokyo) ; 67(12): 1284-1292, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787655

RESUMO

The purpose of the study was to prepare a poly-γ-glutamic acid hydrogel (PGA gel), to evaluate physicochemical properties, its ease of swallowing using texture profile analysis (TPA) and its taste-masking effects on amlodipine besylate (AML) using the artificial taste sensor and human gustatory sensation testing. Using TPA, 0.5 and 1.0% (w/v) PGA gels in the absence of drug were within the range of acceptability for use in people with difficulty swallowing according to permission criteria published by the Japanese Consumers Affairs Agency. The elution of AML from prepared PGA gels was complete within an hour and the gel did not appear to influence the bioavailability of AML. The sensor output of the basic bitterness sensor AN0 in response to AML mixed with 0.5 and 1.0% PGA gels was suppressed to a significantly greater degree than AML mixed with 0.5 and 1.0% agar. In human gustatory sensation testing, 0.5 and 1.0% PGA gels containing AML showed a potent bitterness-suppressing effect. Finally, 1H-NMR spectroscopic analysis was carried out to examine the mechanism of bitterness suppression when AML was mixed with PGA gel. The signals of the proton nearest to the nitrogen atom of AML shifted clearly upfield, suggesting an interaction between the amino group of AML and the carboxyl group of PGA gel. In conclusion, PGA gel is expected to be a useful excipient in formulations of AML, not only increasing ease of swallowing but also masking the bitterness of the basic drug.


Assuntos
Anlodipino/farmacologia , Hidrogéis/farmacologia , Ácido Poliglutâmico/análogos & derivados , Paladar/efeitos dos fármacos , Anlodipino/química , Humanos , Hidrogéis/química , Estrutura Molecular , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa