Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 25(16): e202400107, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38747323

RESUMO

The UV-Vis spectrum of the solvated purine derivative Hypoxanthine (HYX) is investigated using the Quantum Mechanics/Fluctuating Charges (QM/FQ) multiscale approach combined with a sampling of configurations through atomistic Molecular Dynamics (MD) simulations. Keto 1H7H and 1H9H tautomeric forms of HYX are the most stable in aqueous solution and form different stable complexes with the surrounding water molecules, ultimately affecting the electronic absorption spectra. The final simulated spectrum resulting from the combination of the individual spectra of tautomers agrees very well with most of the characteristics in the measured spectrum. The importance of considering the effect of the solute tautomers and, in parallel, the contribution of the different solvent arrangements around the solute when modeling spectral properties, is highlighted. In addition, the high quality of the computed spectra leads to suggesting an alternative way for acquiring tautomeric populations from combined computational/experimental spectra.

2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33727422

RESUMO

Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.


Assuntos
Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Cianobactérias/fisiologia , Modelos Moleculares , Fitocromo/química , Fitocromo/metabolismo , Conformação Proteica , Luz , Optogenética , Relação Estrutura-Atividade , Raios Ultravioleta
3.
Magn Reson Chem ; 62(3): 198-207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258438

RESUMO

This study presents a straightforward solution to the challenge of elucidating the structures of nitrogen containing compounds undergoing isomerization. When spectral line broadening occurs related to isomerization, be it prototropic tautomerism or bond rotations, this poses a significant obstacle to structural elucidation. By adding acids, we demonstrate a simple approach to overcome this issue and effectively sharpen NMR signals for acid stable prototropic tautomers as well as the conformational isomers containing a morpholine or piperazine ring.

4.
Chem Biodivers ; 21(7): e202400637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740555

RESUMO

One of the triazole tautomers, 1,2,4-triazole derivatives, has a wide range of biological activities that suggest its potential therapeutic utility in medicinal chemistry. These actions include anti-inflammatory, anti-cancer, anti-bacterial, anti-tuberculosis, and anti-diabetic effects. Using computational simulations and models, we investigate the structure-activity relationships of 1,2,4-triazoles, showing how various modifications to the triazole core yield a variety of clinical therapeutic benefits. The review highlights the anti-inflammatory effect of 1,2,4-triazoles in relation to their ability to disrupt significant inflammatory mediators and pathways. We present in-silico data that illuminate the triazoles' capacity to inhibit cell division, encourage apoptosis, and stop metastasis in a range of cancer models. This review looks at the bactericidal and bacteriostatic properties of 1,2,4-triazole derivatives, with a focus on their potential efficacy against multi-drug resistant bacterial infections and their usage in tuberculosis therapy. In order to better understand these substances' potential anti-diabetic benefits, this review also looks at how they affect glucose metabolism regulation and insulin responsiveness. Coordinated efforts are required to translate the efficacy of 1,2,4-triazole compounds in preclinical models into practical therapeutic benefits. Based on the information provided, it can be concluded that 1,2,4-triazole derivatives are a promising class of diverse therapeutic agents with potential utility in a range of disorders. Their development and improvement might herald a new era of medical care that will be immensely advantageous to both patients and the medical community as a whole. This comprehensive research, which is further reinforced by in-silico investigations, highlights the great medicinal potential of 1,2,4-triazoles. Additionally, this study encourages more research into these substances and their enhancement for use in pharmaceutical development.


Assuntos
Antineoplásicos , Desenho de Fármacos , Triazóis , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Química Farmacêutica , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Animais , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731811

RESUMO

Recently studied N-(ß-d-glucopyranosyl)-3-aryl-1,2,4-triazole-5-carboxamides have proven to be low micromolar inhibitors of glycogen phosphorylase (GP), a validated target for the treatment of type 2 diabetes mellitus. Since in other settings, the bioisosteric replacement of the 1,2,4-triazole moiety with imidazole resulted in significantly more efficient GP inhibitors, in silico calculations using Glide molecular docking along with unbound state DFT calculations were performed on N-(ß-d-glucopyranosyl)-arylimidazole-carboxamides, revealing their potential for strong GP inhibition. The syntheses of the target compounds involved the formation of an amide bond between per-O-acetylated ß-d-glucopyranosylamine and the corresponding arylimidazole-carboxylic acids. Kinetics experiments on rabbit muscle GPb revealed low micromolar inhibitors, with the best inhibition constants (Kis) of ~3-4 µM obtained for 1- and 2-naphthyl-substituted N-(ß-d-glucopyranosyl)-imidazolecarboxamides, 2b-c. The predicted protein-ligand interactions responsible for the observed potencies are discussed and will facilitate the structure-based design of other inhibitors targeting this important therapeutic target. Meanwhile, the importance of the careful consideration of ligand tautomeric states in binding calculations is highlighted, with the usefulness of DFT calculations in this regard proposed.


Assuntos
Inibidores Enzimáticos , Glicogênio Fosforilase , Imidazóis , Simulação de Acoplamento Molecular , Cinética , Coelhos , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Glicogênio Fosforilase/antagonistas & inibidores , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/química , Imidazóis/química , Imidazóis/síntese química , Imidazóis/farmacologia , Simulação por Computador , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química
6.
Amino Acids ; 55(1): 33-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36319875

RESUMO

Replacement of the main chain peptide bond by imidazole ring seems to be a promising tool for the peptide-based drug design, due to the specific prototropic tautomeric as well as amphoteric properties. In this study, we present that both tautomer and pH change can cause a conformational switch of the studied residues of alanine (1-4) and dehydroalanine (5-8) with the C-terminal peptide group replaced by imidazole. The DFT methods are applied and an environment of increasing polarity is simulated. The conformational maps (Ramachandram diagrams) are presented and the stability of possible conformations is discussed. The neutral forms, tautomers τ (1) and π (2), adapt the conformations αRτ (φ, ψ = - 75°, - 114°) and C7eq (φ, ψ = - 75°, 66°), respectively. Their torsion angles ψ differ by about 180°, which results in a considerable impact on the peptide chain conformation. The cation form (3) adapts both these conformations, whereas the anion analogue (4) prefers the conformations C5 (φ, ψ = - 165°, - 178°) and ß2 (φ, ψ ~ - 165°, - 3°). Dehydroamino acid analogues, the tautomers τ (5) and π (6) as well as the anion form (8), have a strong tendency toward the conformations ß2 (φ, ψ = - 179°, 0°) and C5 (φ, ψ = - 180°, 180°). The preferences of the protonated imidazolium form (7) depend on the environment. The imidazole ring, acting as a donor or acceptor of the hydrogen bonds created within the studied residues, has a profound effect on the type of conformation.


Assuntos
Aminoácidos , Peptídeos , Aminoácidos/química , Isomerismo , Peptídeos/química , Imidazóis , Concentração de Íons de Hidrogênio , Conformação Proteica
7.
Molecules ; 28(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687093

RESUMO

The molecular structure of mycotoxins enniatin B and beauvericin, which are used as ionophores, was studied using density functional theory in various symmetry groups and singly charged states. We have shown that the charge addition or removal causes significant structural changes. Unlike the neutral C3 molecules, the stability of the charged C1 structures was explained by the Jahn-Teller or Pseudo-Jahn-Teller effect. This finding agrees with the available experimental X-ray structures of their metal complexes where electron density transfer from the metal can be expected. Hence, the membrane permeability of metal sandwich-structure complexes possessing antimicrobial activities is modulated by the conformational changes.

8.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049707

RESUMO

In this paper, the molecular and electronic structure of curcumin is studied. High-symmetric gas-phase tautomers and their deprotonated forms in various symmetry groups are identified. The stability of lower-symmetry structures was explained by using the Pseudo-Jahn-Teller (PJT) effect. This effect leads to stable structures of different symmetries for the neutral enol and keto forms. The presented analysis demonstrated the potential significance of the PJT effect, which may modulate the setting of electronic and vibrational (vibronic) energy levels upon photodynamic processes. The PJT effect may rationalize the photoprotection action and activity of naturally occurring symmetric dyes.

9.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175183

RESUMO

Despite numerous studies investigating histamine and its receptors, the impact of histamine protonation states on binding to the histamine H1-receptor (H1R) has remained elusive. Therefore, we assessed the influence of different histamine tautomers (τ-tautomer, π-tautomer) and charge states (mono- vs. dicationic) on the interaction with the ternary histamine-H1R-Gq complex. In atomistic molecular dynamics simulations, the τ-tautomer formed stable interactions with the receptor, while the π-tautomer induced a rotation of the histamine ring by 180° and formed only weaker hydrogen bonding interactions. This suggests that the τ-tautomer is more relevant for stabilization of the active ternary histamine-H1R-Gq complex. In addition to the two monocationic tautomers, the binding of dicationic histamine was investigated, whose interaction with the H1R had been observed in a previous experimental study. Our simulations showed that the dication is less compatible with the ternary histamine-H1R-Gq complex and rather induces an inactive conformation in the absence of the Gq protein. Our data thus indicate that the charge state of histamine critically affects its interactions with the H1R. Ultimately these findings might have implications for the future development of new ligands that stabilize distinct H1R activation states.


Assuntos
Histamina , Receptores Histamínicos H1 , Histamina/metabolismo , Receptores Histamínicos H1/química , Receptores Histamínicos H1/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Receptores Histamínicos H2 , Proteínas de Ligação ao GTP/metabolismo
10.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903463

RESUMO

A proposed mechanism of the reaction of guanidinium chlorides with dimethyl acetylenedicarboxylate in a tandem aza-Michael addition reaction/intramolecular cyclization was investigated by DFT M06-2X and B3LYP computational approaches. The energies of the products were compared against the G3, M08-HX, M11, and wB97xD data or experimentally obtained product ratios. The structural diversity of the products was interpreted by the concurrent formation of different tautomers formed in situ upon deprotonation with a 2-chlorofumarate anion. A comparison of relative energies of the characteristic stationary points along the examined reaction paths indicated that the initial nucleophilic addition is energetically the most demanding process. The overall reaction is strongly exergonic, as predicted by both methods, which is primarily due to methanol elimination during the intramolecular cyclization step producing cyclic amide structures. Formation of a five-membered ring upon intramolecular cyclization is highly favored for the acyclic guanidine, while optimal product structure for the cyclic guanidines is based on a 1,5,7-triaza [4.3.0]-bicyclononane skeleton. Relative stabilities of the possible products calculated by the employed DFT methods were compared against the experimental product ratio. The best agreement was obtained for the M08-HX approach while the B3LYP approach provided somewhat better results than the M06-2X and M11 methods.

11.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677688

RESUMO

Edaravone, acting as a cerebral protective agent, is administered to treat acute brain infarction. Its poor solubility is addressed here by means of optimizing the composition of the aqueous choline chloride (ChCl)-based eutectic solvents prepared with ethylene glycol (EG) or glycerol (GL) in the three different designed solvents compositions. The slurry method was used for spectroscopic solubility determination in temperatures between 298.15 K and 313.15 K. Measurements confirmed that ethaline (ETA = ChCl:EG = 1:2) and glyceline (GLE = ChCl:GL = 1:2) are very effective solvents for edaravone. The solubility at 298.15 K in the optimal compositions was found to be equal xE = 0.158 (cE = 302.96 mg/mL) and xE = 0.105 (cE = 191.06 mg/mL) for glyceline and ethaline, respectively. In addition, it was documented that wetting of neat eutectic mixtures increases edaravone solubility which is a fortunate circumstance not only from the perspective of a solubility advantage but also addresses high hygroscopicity of eutectic mixtures. The aqueous mixture with 0.6 mole fraction of the optimal composition yielded solubility values at 298.15 K equal to xE = 0.193 (cE = 459.69 mg/mL) and xE = 0.145 (cE = 344.22 mg/mL) for glyceline and ethaline, respectively. Since GLE is a pharmaceutically acceptable solvent, it is possible to consider this as a potential new liquid form of this drug with a tunable dosage. In fact, the recommended amount of edaravone administered to patients can be easily achieved using the studied systems. The observed high solubility is interpreted in terms of intermolecular interactions computed using the Conductor-like Screening Model for Real Solvents (COSMO-RS) approach and corrected for accounting of electron correlation, zero-point vibrational energy and basis set superposition errors. Extensive conformational search allowed for identifying the most probable contacts, the thermodynamic and geometric features of which were collected and discussed. It was documented that edaravone can form stable dimers stabilized via stacking interactions between five-membered heterocyclic rings. In addition, edaravone can act as a hydrogen bond acceptor with all components of the studied systems with the highest affinities to ion pairs of ETA and GLE. Finally, the linear regression model was formulated, which can accurately estimate edaravone solubility utilizing molecular descriptors obtained from COSMO-RS computations. This enables the screening of new eutectic solvents for finding greener replacers of designed solvents. The theoretical analysis of tautomeric equilibria confirmed that keto-isomer edaravone is predominant in the bulk liquid phase of all considered deep eutectic solvents (DES).

12.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049768

RESUMO

Glycogen phosphorylase (GP) is a key regulator of glucose levels and, with that, an important target for the discovery of novel treatments against type 2 diabetes. ß-d-Glucopyranosyl derivatives have provided some of the most potent GP inhibitors discovered to date. In this regard, C-ß-d-glucopyranosyl azole type inhibitors proved to be particularly effective, with 2- and 4-ß-d-glucopyranosyl imidazoles among the most potent designed to date. His377 backbone C=O hydrogen bonding and ion-ion interactions of the protonated imidazole with Asp283 from the 280s loop, stabilizing the inactive state, were proposed as crucial to the observed potencies. Towards further exploring these features, 4-amino-3-(ß-d-glucopyranosyl)-5-phenyl-1H-pyrazole (3) and 3-(ß-d-glucopyranosyl)-4-guanidino-5-phenyl-1H-pyrazole (4) were designed and synthesized with the potential to exploit similar interactions. Binding assay experiments against rabbit muscle GPb revealed 3 as a moderate inhibitor (IC50 = 565 µM), but 4 displayed no inhibition at 625 µM concentration. Towards understanding the observed inhibitions, docking and post-docking molecular mechanics-generalized Born surface area (MM-GBSA) binding free energy calculations were performed, together with Monte Carlo and density functional theory (DFT) calculations on the free unbound ligands. The computations revealed that while 3 was predicted to hydrogen bond with His377 C=O in its favoured tautomeric state, the interactions with Asp283 were not direct and there were no ion-ion interactions; for 4, the most stable tautomer did not have the His377 backbone C=O interaction and while ion-ion interactions and direct hydrogen bonding with Asp283 were predicted, the conformational strain and entropy loss of the ligand in the bound state was significant. The importance of consideration of tautomeric states and ligand strain for glucose analogues in the confined space of the catalytic site with the 280s loop in the closed position was highlighted.


Assuntos
Glicogênio Fosforilase , Pirazóis , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Glicogênio Fosforilase/metabolismo , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Método de Monte Carlo , Conformação Molecular , Glucose/análogos & derivados , Glucose/química , Glucose/metabolismo , Glucose/farmacologia , Diabetes Mellitus Tipo 2
13.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985826

RESUMO

Pyrazoloporphyrins (PzPs), which are porphyrin analogues incorporating a pyrazole subunit, are examples of carbaporphyrin-type structures with a carbon atom within the macrocyclic cavity. DFT calculations were used to assess a series of 17 PzP tautomers, nine monoprotonated species and four related diprotonated PzP dications. The geometries of the structures were optimized using M06-2X/6-311++G(d,p), and the relative stabilities computed with the cc-PVTZ functional. Nucleus independent chemical shifts, both NICS(0) and NICS(1)zz, were calculated, and the anisotropy of the induced current density (AICD) plots were generated for all of the species under investigation. The results for free base PzPs show that fully aromatic PzP tautomers are not significantly more stable than weakly aromatic cross-conjugated species. In addition, strongly aromatic structures with internal CH2's are much less stable, a feature that is also seen for protonated PzPs. The degree of planarity for the individual macrocycles does not significantly correlate with the stability of these structures. The results allow significant aromatic conjugation pathways to be identified in many cases, and provide insights into the aromatic properties of this poorly studied system. These investigations also complement experimental results for PzPs and emphasize the need for further studies in this area.

14.
Chemphyschem ; 23(6): e202100908, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35029036

RESUMO

In order to expand the existing genetic letters, it is necessary to design robust nucleotides that can function naturally in living cells. Therefore, it is desirable to examine the roles of recently-proposed second-generation artificially genetic letters in producing stable duplex DNA. Herein, a reliable dispersion-corrected density functional theory method is used to shed light on the electronic structures and properties of different rare tautomers of proposed expanded genetic letters and their effects on the base pair stabilities in the duplex DNA. It is found that the rare tautomers are not only stable in the aqueous medium but can also pair with natural bases to produce stable mispairs. Except for J and V, all of the artificial genetic letters are found to produce mispairs that are about 1-7 kcal mol-1 more stable than their complementary counterparts. They are also appreciably more stable than the naturally occurring G : C, A : T, and G : T pairs. Mainly attractive electrostatic interactions and polarity of the monomers are responsible for the higher base pair stabilities.


Assuntos
DNA , Nucleotídeos , Pareamento de Bases , DNA/química , DNA/genética , Isomerismo , Nucleotídeos/química , Eletricidade Estática , Termodinâmica
15.
J Comput Aided Mol Des ; 36(11): 805-824, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36319876

RESUMO

Accurate calculation of relative tautomer energies in different environments is a prerequisite to many parameters of relevance in drug discovery. This work provides a thorough benchmark of the semiempirical methods AM1, PM3 and GFN2-xTB, the force-field OPLS4, Hartree-Fock and HF-3c, the density functionals PBEh-3c, B97-3c, r2SCAN-3c, PBE, PBE0, TPSS, r2SCAN, ω-B97X-V, M06-2X, B3LYP, B2PLYP, and second-order perturbation theory MP2 versus the gold-standard coupled-cluster DLPNO-CCSD(T) using the def2-QZVPP basis set. The outperforming method identified is M06-2X, whereas r2SCAN-3c is the best-perfoming one in the set of cost-optimized methods. Application of the two methods on a challenging subset from the SAMPL2 challenge provides evidence that deviations from experiment are caused by deficiencies of current continuum solvation methods.


Assuntos
Descoberta de Drogas , Isomerismo
16.
Bioessays ; 42(11): e2000051, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32830350

RESUMO

Properties of non-canonical GC base pairs and their relations with mechanochemical cleavage of DNA are analyzed. A hypothesis of the involvement of the transient GC wobble base pairs both in the mechanisms of the mechanochemical cleavage of DNA and epigenetic mechanisms involving of 5-methylcytosine, is proposed. The hypothesis explains the increase in the frequency of the breaks of the sugar-phosphate backbone of DNA after cytosines, the asymmetric character of these breaks, and an increase in break frequency in CpG after cytosine methylation. As an alternative hypothesis, probable implication of GC+ Hoogsteen base pairs is considered, which now exemplify the best-studied non-canonical GC base pairs in the DNA double helix. Also see the video abstract here https://youtu.be/EUunVWL0ptw.


Assuntos
Citosina , DNA , 5-Metilcitosina , Pareamento de Bases/genética , DNA/genética , Epigênese Genética , Conformação de Ácido Nucleico
17.
J Enzyme Inhib Med Chem ; 37(1): 597-605, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35067138

RESUMO

The influence of base type, temperature, and solvent on regioselective C(9)/C(10) "click" modifications within the tropolone ring of colchiceine (2) is investigated. New ether derivatives of 2, bearing alkyne, azide, vinyl, or halide aryl groups enable assembly of the alkaloid part with heterocycles or important biomolecules such as saccharides, geldanamycin or AZT into hybrid scaffolds by dipolar cycloaddition (CuAAC) or Heck reaction. Compared to colchicine (1) or colchiceine (2), ether congeners, as e.g. 3e [IC50s(3e) ∼ 0.9 nM], show improved or similar anticancer effects, whereby the bulkiness of the substituents and the substitution pattern of the tropolone proved to be essential. Biological studies reveal that expanding the ether arms by terminal basic heterocycles as quinoline or pyridine, decreases the toxicity in HDF cells at high anticancer potency (IC50s ∼ 1-2 nM). Docking of ether and hybrid derivatives into the colchicine pocket of αGTP/ß tubulin dimers reveals a relationship between the favourable binding mode and the attractive anticancer potency.


Assuntos
Antineoplásicos/farmacologia , Colchicina/farmacologia , Compostos Heterocíclicos/farmacologia , Tropolona/farmacologia , Moduladores de Tubulina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colchicina/síntese química , Colchicina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Tropolona/síntese química , Tropolona/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
18.
Drug Dev Res ; 83(7): 1469-1504, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35971890

RESUMO

With different nitrogen-containing heterocyclic moieties, Indazoles earn one of the places among the top investigated molecules in medicinal research. Indazole, an important fused aromatic heterocyclic system containing benzene and pyrazole ring with a chemical formula of C7 H6 N2 , is also called benzopyrazole. Indazoles consist of three tautomeric forms in which 1H-tautomers (indazoles) and 2H-tautomers (isoindazoles) exist in all phases. The tautomerism in indazoles greatly influences synthesis, reactivity, physical and even the biological properties of indazoles. The thermodynamic internal energy calculation of these tautomers points view 1H-indazole as the predominant and stable form over 2H-indazole. The natural source of indazole is limited and exists in alkaloidal nature (i.e., nigellidine, nigeglanine, nigellicine, etc.) found from Nigella plants. Some of the FDA-approved drugs like Axitinib, Entrectinib, Niraparib, Benzydamine, and Granisetron are being used to treat renal cell cancer, non-small cell lung cancer (NSCLC), epithelial ovarian cancer, chronic inflammation, chemotherapy-induced nausea, vomiting, and many more uses. Besides all these advantages regarding its biological activity, the main issue about indazoles is the less abundance in plant sources, and their synthetic derivatives also often face problems with low yield. In this review article, we discuss its chemistry, tautomerism along with their effects, different schematics for the synthesis of indazole derivatives, and their different biological activities.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Indazóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química
19.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364066

RESUMO

The influence of solvents on intramolecular interactions in 5- or 6-substituted nitro and amino derivatives of six tautomeric forms of uracil was investigated. For this purpose, the density functional theory (B97-D3/aug-cc-pVDZ) calculations were performed in ten environments (1 > ε > 109) using the polarizable continuum model (PCM) of solvation. The substituents were characterized by electronic (charge of the substituent active region, cSAR) and geometric parameters. Intramolecular interactions between non-covalently bonded atoms were investigated using the theory of atoms in molecules (AIM) and the non-covalent interaction index (NCI) method, which allowed discussion of possible interactions between the substituents and N/NH endocyclic as well as =O/−OH exocyclic groups. The nitro group was more electron-withdrawing in the 5 than in the 6 position, while the opposite effect was observed in the case of electron donation of the amino group. These properties of both groups were enhanced in polar solvents; the enhancement depended on the ortho interactions. Substitution or solvation did not change tautomeric preferences of uracil significantly. However, the formation of a strong NO∙∙∙HO intramolecular hydrogen bond in the 5-NO2 derivative stabilized the dienol tautomer from +17.9 (unsubstituted) to +5.4 kcal/mol (substituted, energy relative to the most stable diketo tautomer).


Assuntos
Elétrons , Uracila , Uracila/química , Isomerismo , Ligação de Hidrogênio , Solventes
20.
Photosynth Res ; 148(1-2): 67-76, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33710530

RESUMO

In the first two decades of the XXI century, corroles have emerged as an important class of porphyrinoids for photonics and biomedical photonics. In comparison with porphyrins, corroles have lower molecular symmetry and higher electron density, which leads to uniquely complementary properties. In macrocycles of free-base corroles, for example, three protons are distributed among four pyrrole nitrogens. It results in distinct tautomers that have different thermodynamic energies. Herein, we focus on the excited-state dynamics of a corrole modified with L-phenylalanine. The tautomerization in the singlet-excited state occurs in the timescales of about 10-100 picoseconds and exhibits substantial kinetic isotope effects. It, however, does not discernably affect nanosecond deactivation of the photoexcited corrole and its basic photophysics. Nevertheless, this excited-state tautomerization dynamics can strongly affect photoinduced processes with comparable or shorter timescales, considering the 100-meV energy differences between the tautomers in the excited state. The effects on the kinetics of charge transfer and energy transfer, initiated prior to reaching the equilibrium thermalization of the excited-state tautomer population, can be indeed substantial. Such considerations are crucially important in the design of systems for artificial photosynthesis and other forms of energy conversion and charge transduction.


Assuntos
Aminoácidos/química , Vias Biossintéticas , Transferência de Energia/fisiologia , Ligação de Hidrogênio , Processos Fotoquímicos , Porfirinas/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa