Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Genes Dev ; 35(11-12): 888-898, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33985972

RESUMO

Plants monitor many aspects of their fluctuating environments to help align their development with seasons. Molecular understanding of how noisy temperature cues are registered has emerged from dissection of vernalization in Arabidopsis, which involves a multiphase cold-dependent silencing of the floral repressor locus FLOWERING LOCUS C (FLC). Cold-induced transcriptional silencing precedes a low probability PRC2 epigenetic switching mechanism. The epigenetic switch requires the absence of warm temperatures as well as long-term cold exposure. However, the natural temperature inputs into the earlier transcriptional silencing phase are less well understood. Here, through investigation of Arabidopsis accessions in natural and climatically distinct field sites, we show that the first seasonal frost strongly induces expression of COOLAIR, the antisense transcripts at FLC Chamber experiments delivering a constant mean temperature with different fluctuations showed the freezing induction of COOLAIR correlates with stronger repression of FLC mRNA. Identification of a mutant that ectopically activates COOLAIR revealed how COOLAIR up-regulation can directly reduce FLC expression. Consistent with this, transgenes designed to knockout COOLAIR perturbed the early phase of FLC silencing. However, all transgenes designed to remove COOLAIR resulted in increased production of novel convergent FLC antisense transcripts. Our study reveals how natural temperature fluctuations promote COOLAIR regulation of FLC, with the first autumn frost acting as a key indicator of autumn/winter arrival.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Domínio MADS/genética , Estações do Ano
2.
Genes Dev ; 35(11-12): 785-786, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34074694

RESUMO

FLOWERING LOCUS C (FLC), a MADS-box transcription factor, plays a major role in determining flowering time in Arabidopsis In this issue of Genes & Development, Zhao and colleagues (pp. 888-898) elucidate the role of COOLAIR antisense noncoding RNAs in FLC regulation through field trials and laboratory experiments. COOLAIR-mediated FLC silencing is induced by the first seasonal frost in the field and thus acts as a key molecular indicator during autumn for winter arrival.


Assuntos
Proteínas de Arabidopsis , Proteínas de Domínio MADS , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , RNA Antissenso , Estações do Ano
3.
Mol Cell ; 78(1): 57-69.e4, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059760

RESUMO

Homeothermic organisms maintain their core body temperature in a narrow, tightly controlled range. Whether and how subtle circadian oscillations or disease-associated changes in core body temperature are sensed and integrated in gene expression programs remain elusive. Furthermore, a thermo-sensor capable of sensing the small temperature differentials leading to temperature-dependent sex determination (TSD) in poikilothermic reptiles has not been identified. Here, we show that the activity of CDC-like kinases (CLKs) is highly responsive to physiological temperature changes, which is conferred by structural rearrangements within the kinase activation segment. Lower body temperature activates CLKs resulting in strongly increased phosphorylation of SR proteins in vitro and in vivo. This globally controls temperature-dependent alternative splicing and gene expression, with wide implications in circadian, tissue-specific, and disease-associated settings. This temperature sensor is conserved across evolution and adapted to growth temperatures of diverse poikilotherms. The dynamic temperature range of reptilian CLK homologs suggests a role in TSD.


Assuntos
Processamento Alternativo , Regulação da Temperatura Corporal/genética , Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Répteis/genética , Animais , Evolução Biológica , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/fisiologia , Répteis/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo
4.
J Biol Chem ; 300(5): 107238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552736

RESUMO

Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.


Assuntos
Alternaria , Luz Azul , Flavina-Adenina Dinucleotídeo , Proteínas Fúngicas , Fotorreceptores Microbianos , Alternaria/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fitocromo/metabolismo , Fitocromo/química , Fitocromo/genética , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Temperatura
5.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217857

RESUMO

Cellular regeneration in response to wounding is fundamental to maintain tissue integrity. Various internal factors including hormones and transcription factors mediate healing, but little is known about the role of external factors. To understand how the environment affects regeneration, we investigated the effects of temperature upon the horticulturally relevant process of plant grafting. We found that elevated temperatures accelerated vascular regeneration in Arabidopsis thaliana and tomato grafts. Leaves were crucial for this effect, as blocking auxin transport or mutating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) or YUCCA2/5/8/9 in the cotyledons abolished the temperature enhancement. However, these perturbations did not affect grafting at ambient temperatures, and temperature enhancement of callus formation and tissue adhesion did not require PIF4, suggesting leaf-derived auxin specifically enhanced vascular regeneration in response to elevated temperatures. We also found that elevated temperatures accelerated the formation of inter-plant vascular connections between the parasitic plant Phtheirospermum japonicum and host Arabidopsis, and this effect required shoot-derived auxin from the parasite. Taken together, our results identify a pathway whereby local temperature perception mediates long distance auxin signaling to modify regeneration, grafting and parasitism. This article has an associated 'The people behind the papers' interview.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Alta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regeneração/genética , Transdução de Sinais/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transporte Biológico/genética , Cotilédone/genética , Cotilédone/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/fisiologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas
6.
Small ; 20(12): e2307800, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948417

RESUMO

A flexible sensor that simultaneously senses temperature and pressure is crucial in various fields, such as human-machine interaction, artificial intelligence, and biomedical applications. Previous research has mainly focused on single-function flexible sensors for e-skins or smart devices, and integrated bimodal sensing of temperature and pressure without complex crosstalk decoupling algorithms remains challenging. In this work, a flexible bimodal sensor is proposed that utilizes spatial orthogonality between in-plane thermoelectricity and out-plane piezoresistivity, which enables fully decoupled temperature-pressure sensing. The proposed bimodal sensor exhibits a high sensitivity of 281.46 µV K-1 for temperature sensing and 2.181 kPa-1 for pressure sensing. In the bimodal sensing mode, the sensor exhibits negligible mutual interference, providing a measurement error of ± 7% and ± 8% for temperature and pressure, respectively, within a 120 kPa pressure range and a 40 K temperature variation. Additionally, simultaneous spatial mapping of temperature and pressure with a bimodal sensor array enables contact shape identification with enhanced accuracy beyond the limit imposed by the number of sensing units. The proposed integrated bimodal sensing strategy does not require complex crosstalk decoupling algorithms, which represents a significant advancement in flexible sensors for applications that necessitate simultaneous sensing of temperature and pressure.

7.
Small ; 20(27): e2308748, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282458

RESUMO

The upconversion luminescence (UCL) in the second near-infrared window (NIR-II) is highly attractive due to its excellent performance in high-resolution bioimaging, anticounterfeiting, and temperature sensing. However, upconvertion nanoparticles (UCNPs) are normally emitted in visible light, potentially impacting the imaging quality. Here, a monochromatic Er3+-rich (NaErF4:x%Yb@NaYF4) nanoparticles with excitation at 1532 nm and emission at 978 nm is proposed, both situated in the NIR-II region. The proper proportion of Yb3+ ions doping has a positive effect on the NIR-II emission, by enhancing the cross relaxation efficiency and accelerating the energy transfer rate. Owing to the interaction between the Er3+ and Yb3+ is inhibited at low temperatures, the UCL emission intensities at visible and NIR-II regions show opposite trend with temperature changing, which establishes a fitting formula to derive temperature from the luminous intensity ratio, promoting the potential application of UCL in NIR-II regions for the temperature sensing.

8.
Small ; 20(28): e2310193, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366281

RESUMO

Thermochromic materials have been widely investigated due to their relevance in technological applications, including anti-counterfeiting materials, fashion accessories, displays, and temperature sensors. While many organisms exhibit color changes, few studies have explored the potential of the responsive natural materials for temperature sensing, especially given the often limited and irreversible nature of these changes in live specimens. Here, it is shown that the hindwings of the blue-winged grasshopper Coloracris azureus can act as a reversible, power-free bio-thermometer, transitioning from blue to purple/red in a 30-100°C temperature range. Using microspectrophotometry, light microscopy and Raman microscopy, it is found that the blue color of the wings originates from pigmentary coloration, based on a complex of astaxanthin and proteins. The thermochromic shift from blue to red, induced by a temperature increase, is attributed to a denaturation of this carotenoprotein complex, upon which astaxanthin is released. This process is reversible upon a subsequent temperature decrease. The color changes are both swift and consistent upon temperature change, making the grasshopper's wings suitable as direct visual sensors on thermally dynamic, curved surfaces. The potential possibilities of sustainable, power-free temperature sensors or microthermometers based on biomaterials are demonstrated.


Assuntos
Gafanhotos , Temperatura , Asas de Animais , Animais , Gafanhotos/fisiologia , Asas de Animais/química , Cor , Xantofilas/química , Análise Espectral Raman
9.
Small ; : e2404177, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106238

RESUMO

The presence of neurons is crucial in neuromorphic computing systems as they play a vital role in modulating the strength of synapses through the release of either excitatory or inhibitory stimuli. Hence, the development of sensory neurons plays a pivotal role in broadening the scope of brain-inspired neural computing. The present study introduces an artificial sensory neuron, which is constructed using a temperature-sensitive volatile complementary resistance switch memristor based on the functional layer of the chitosan/PNIPAM bilayer. The resistive switching behavior arises from the formation and ionization of oxygen vacancy filaments, whereby the threshold voltage and low resistive resistance of the device exhibit a temperature-dependent increase within the range of 290-410 K. A functional replication of a neuron with leaky integration and firing has been successfully developed, effectively simulating essential biological functions such as firing triggered by threshold, refractory period implementation, and modulation of spiking frequency. The artificial sensory neuron exhibits characteristics similar to those of leaky integrated firing neurons that receive temperature inputs. It has the potential to control the output frequency and amplitude under varying temperature conditions, making it suitable for temperature-sensing applications. This study presents a potential hardware implementation for developing efficient artificial intelligence systems that can support temperature detections.

10.
Small ; : e2401335, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693088

RESUMO

Exploration of multifunctional integrated catalysts is of great significance for photocatalysis toward practical application. Herein, a 1D confined nanoreactor with a heterogeneous core-shell structure is designed for synergies of efficient catalysis and temperature monitoring by custom encapsulation of Z-scheme heterojunction CuS quantum dots/BiVO4 (CuS QDs/BiVO4) and Y2O2S-Er, Yb. The dispersed active sites created by the QDs with high surface energy improve the mass transfer efficiency, and the efficient electron transport channels at the heterogeneous interface extend the carrier lifetime, which endows the nanoreactor with excellent catalytic performance. Meanwhile, real-time temperature monitoring is realized based on the thermally coupled levels 2H11/2/4S3/2→4I15/2 of Er3+ using fluorescence intensity ratio, which enables the monitorable photocatalysis. Furthermore, the nanoreactor with a multidimensional structure increases effective intermolecular collisions to facilitate the catalytic process by restricting the reaction within distinct enclosed spaces and circumvents potential unknown interaction effects. The design of multi-space nanoconfined reactors opens up a new avenue to modulate catalyst function, providing a unique perspective for photocatalytic applications in the mineralization of organic pollutants, hydrogen production, and nitrogen fixation.

11.
Small ; 20(25): e2310180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342676

RESUMO

Knee replacement surgery confronts challenges including patient dissatisfaction and the necessity for secondary procedures. A key requirement lies in dual-modal measurement of force and temperature of artificial joints during postoperative monitoring. Here, a novel non-toxic near-infrared (NIR) phosphor Sr3Sn2O7:Nd, Yb, is designed to realize the dual-modal measurement. The strategy is to entail phonon-assisted upconversion luminescence (UCL) and trap-controlled mechanoluminescence (ML) in a single phosphor well within the NIR biological transmission window. The phosphor is embedded in medical bone cement forming a smart joint in total knee replacements illustrated as a proof-of-concept. The sensing device can be charged in vitro by a commercial X-ray source with a safe dose rate for ML, and excited by a low power 980 nm laser for UCL. It attains impressive force and temperature sensing capabilities, exhibiting a force resolution of 0.5% per 10 N, force detection threshold of 15 N, and a relative temperature sensitive of up to 1.3% K-1 at 309 K. The stability against humidity and thermal shock together with the robustness of the device are attested. This work introduces a novel methodological paradigm, paving the way for innovative research to enhance the functionality of artificial tissues and joints in living organisms.


Assuntos
Artroplastia do Joelho , Temperatura , Humanos , Estrôncio/química , Itérbio/química , Luminescência , Neodímio/química , Medições Luminescentes/métodos , Raios Infravermelhos
12.
Nanotechnology ; 35(40)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941983

RESUMO

In this research, we report an enhanced sensing response ethanol gas sensing device based on a ternary nanocomposite of molybdenum diselenide-zinc oxide heterojunctions decorated rGO (MoSe2/ZnO/rGO) at room temperature. The sensing performance of the ternary nanocomposite sensing device has been analysed for various concentrations of ethanol gas (1-500 ppm). The gas-sensing results have revealed that for 500 ppm ethanol gas concentration, the sensing device has exhibited an enhanced response value(Rg/Ra)of 50.2. Significantly, the sensing device has displayed a quick response and recovery time of 6.2 and 12.9 s respectively. In addition to this, the sensing device has shown a great prospect for long-term detection of ethanol gas (45 days). The sensing device has demonstrated the ability to detect ethanol at remarkably low concentrations of 1 ppm. The enhanced sensing performance of the ternary nanocomposite sensing device has highlighted the effective synergistic effect between MoSe2nanosheets, ZnO nanorods, and rGO nanosheets. This has been attributed to the formation of two heterojunctions in the ternary nanocomposite sensor: a p-n heterojunction between MoSe2and ZnO and a p-p heterojunction between MoSe2and rGO. The analysis of the results has suggested that the proposed MoSe2/ZnO/rGO nanocomposite sensing device could be considered a promising candidate for the real-time detection of ethanol gas.

13.
Nanotechnology ; 35(40)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959867

RESUMO

The number of layers present in a two-dimensional (2D) nanomaterial plays a critical role in applications that involve surface interaction, for example, gas sensing. This paper reports the synthesis of 2D WS2nanoflakes using the facile liquid exfoliation technique. The nanoflakes were exfoliated using bath sonication (BS-WS2) and probe sonication (PS-WS2). The thickness of the BS-WS2was found to range between 70 and 200 nm, and that of PS-WS2varied from 0.6 to 80 nm, indicating the presence of single to few layers of WS2when characterized using atomic force microscope. All the WS2samples were thoroughly characterized using electron microscopes, x-ray diffractometer, Raman spectroscopy, UV-Visible spectroscopy, Fourier transform infrared spectroscope, and thermogravimetric analyser. Both the nanostructured samples were exposed to 2 ppm of NO2at room temperature. Interestingly, BS-WS2which comprises of a greater number of WS2layers exhibited -14.2% response as against -3.4% response of PS-WS2, the atomically thin sample. The BS-WS2sample was found to be highly selective towards NO2but was slower (with incomplete recovery) as compared to PS-WS2. The PS-WS2sample was observed to exhibit -11.9% to -27.4% response to 2-10 ppm of CO and -3.4%-35.2% response to 2-10 ppm of NO2at room temperature, thereby exhibiting the potential to detect two gases simultaneously. These gases could be accurately predicted and quantified if the response times of the PS-WS2sample were considered. The atomically thin WS2-based sensor exhibited a limit of detection of 131 and 81 ppb for CO and NO2, respectively.

14.
RNA Biol ; 21(1): 1-6, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-39016038

RESUMO

Understanding how cells sense temperature is a fundamental question in biology and is pivotal for the evolution of life. In numerous organisms, temperature is not only sensed but also generated due to cellular processes. Consequently, the mechanisms governing temperature sensation in various organisms have been experimentally elucidated. Extending upon others' proposals and demonstration of protein- and nucleic acid-based thermosensors, and utilizing a colonial India 'punkah-wallahs' analogy, I present my rationale for the necessity of temperature sensing in every organelle in a cell. Finally, I propose temperature-sensing riboceptors (ribonucleic acid receptors) to integrate all the RNA molecules (mRNA, non-coding RNA, and so forth) capable of sensing temperature and triggering a signaling event, which I call as thermocrine signaling. This approach could enable the identification of riboceptors in every cell of almost every organism, not only for temperature but also for other classes of ligands, including gaseous solutes, and water.


Assuntos
Transdução de Sinais , Animais , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura , Sensação Térmica/genética
15.
Adv Exp Med Biol ; 1461: 33-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39289272

RESUMO

Organisms receive environmental information and respond accordingly in order to survive and proliferate. Temperature is the environmental factor of most immediate importance, as exceeding its life-supporting range renders essential biochemical reactions impossible. In this chapter, we introduce the mechanisms underlying cold tolerance and temperature acclimation in a model organism-the nematode Caenorhabditis elegans, at molecular and physiological levels. Recent investigations utilizing molecular genetics and neural calcium imaging have unveiled a novel perspective on cold tolerance within the nematode worm. Notably, the ASJ neuron, previously known to possess photosensitive properties, has been found to sense temperature and regulate the sperm and gut cell-mediated pathway underlying cold tolerance. We will also explore C. elegans' cold tolerance and cold acclimation at the molecular and tissue levels.


Assuntos
Aclimatação , Caenorhabditis elegans , Temperatura Baixa , Animais , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Aclimatação/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neurônios/fisiologia , Neurônios/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039713

RESUMO

Many aspects of photoperception by plants and microorganisms are initiated by the phytochrome (Phy) family of photoreceptors that detect light through interconversion between red light- (Pr) and far-red light-absorbing (Pfr) states. Plants synthesize a small family of Phy isoforms (PhyA to PhyE) that collectively regulate photomorphogenesis and temperature perception through redundant and unique actions. While the selective roles of these isoforms have been partially attributed to their differing abundances, expression patterns, affinities for downstream partners, and turnover rates, we show here from analysis of recombinant Arabidopsis chromoproteins that the Phy isoforms also display distinct biophysical properties. Included are a hypsochromic shift in the Pr absorption for PhyC and varying rates of Pfr to Pr thermal reversion, part of which can be attributed to the core photosensory module in each. Most strikingly, PhyB combines strong temperature dependence of thermal reversion with an order-of-magnitude faster rate to likely serve as the main physiological thermosensor, whereby thermal reversion competes with photoconversion. In addition, comparisons of Pfr occupancies for PhyA and PhyB under a range of red- and white-light fluence rates imply that low-light environments are effectively sensed by PhyA, while high-light environments, such as full sun, are effectively sensed by PhyB. Parallel analyses of the Phy isoforms from potato and maize showed that the unique features within the Arabidopsis family are conserved, thus indicating that the distinct biophysical properties among plant Phy isoforms emerged early in Phy evolution, likely to enable full interrogation of their light and temperature environments.


Assuntos
Arabidopsis/fisiologia , Transdução de Sinal Luminoso , Fitocromo/fisiologia , Escherichia coli , Isoformas de Proteínas , Proteínas Recombinantes , Sensação Térmica
17.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610588

RESUMO

In this paper, we propose and demonstrate a network analysis optical frequency domain reflectometer (NA-OFDR) for distributed temperature measurements at high spatial (down to ≈3 cm) and temperature resolution. The system makes use of a frequency-stepped, continuous-wave (cw) laser whose output light is modulated using a vector network analyzer. The latter is also used to demodulate the amplitude of the beat signal formed by coherently mixing the Rayleigh backscattered light with a local oscillator. The system is capable of attaining high measurand resolution (≈50 mK at 3-cm spatial resolution) thanks to the high sensitivity of coherent Rayleigh scattering to temperature. Furthermore, unlike the conventional optical-frequency domain reflectometry (OFDR), the proposed system does not rely on the use of a tunable laser and therefore is less prone to limitations related to the laser coherence or sweep nonlinearity. Two configurations are analyzed, both numerically and experimentally, based on either a double-sideband or single-sideband modulated probe light. The results confirm the validity of the proposed approach.

18.
Sensors (Basel) ; 24(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39204971

RESUMO

Deploying distributed fiber-optic sensor (DFOS) technology to gather environmental parameters over expansive areas is an essential monitoring strategy in the context of comprehensive searches for anomalous places. This study utilizes a single temperature measurement channel within a commercial Raman-based distributed temperature sensing (RDTS) interrogator and divides it into two separate, uncorrelated paths to enable spatial duplex temperature measurements. The distinction between temperature events corresponding to each path in the dual separate path (DSP) in RDTS can be achieved when temperature events are concurrently occurring in the DSP. Additionally, the RDTS-DSP solution may integrate free space optics (FSO) into its fiber path, which serves to enhance the user-friendliness, scalability, and cost-effectiveness of DFOS technology. An RDTS measurement channel can effectively function as a DSP, thus doubling the RDTS measurement pathway, and can be combined with FSO to significantly improve RDTS performance.

19.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732880

RESUMO

Multifunctional sensors have played a crucial role in constructing high-integration electronic networks. Most of the current multifunctional sensors rely on multiple materials to simultaneously detect different physical stimuli. Here, we demonstrate the large piezo-pyroelectric effect in ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals for simultaneous pressure and temperature sensing. The outstanding piezoelectric and pyroelectric properties of PMN-PT result in rapid response speed and high sensitivity, with values of 46 ms and 28.4 nA kPa-1 for pressure sensing, and 1.98 s and 94.66 nC °C-1 for temperature detection, respectively. By leveraging the distinct differences in the response speed of piezoelectric and pyroelectric responses, the piezo-pyroelectric effect of PMN-PT can effectively detect pressure and temperature from mixed-force thermal stimuli, which enables a robotic hand for stimuli classification. With appealing multifunctionality, fast speed, high sensitivity, and compact structure, the proposed self-powered bimodal sensor therefore holds significant potential for high-performance artificial perception.

20.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931768

RESUMO

The monitoring of body temperature is a recent addition to the plethora of parameters provided by wellness and fitness wearable devices. Current wearable temperature measurements are made at the skin surface, a measurement that is impacted by the ambient environment of the individual. The use of near-infrared spectroscopy provides the potential for a measurement below the epidermal layer of skin, thereby having the potential advantage of being more reflective of physiological conditions. The feasibility of noninvasive temperature measurements is demonstrated by using an in vitro model designed to mimic the near-infrared spectra of skin. A miniaturizable solid-state laser-diode-based near-infrared spectrometer was used to collect diffuse reflectance spectra for a set of seven tissue phantoms composed of different amounts of water, gelatin, and Intralipid. Temperatures were varied between 20-24 °C while collecting these spectra. Two types of partial least squares (PLS) calibration models were developed to evaluate the analytical utility of this approach. In both cases, the collected spectra were used without pre-processing and the number of latent variables was the only optimized parameter. The first approach involved splitting the whole dataset into separate calibration and prediction subsets for which a single optimized PLS model was developed. For this first case, the coefficient of determination (R2) is 0.95 and the standard error of prediction (SEP) is 0.22 °C for temperature predictions. The second strategy used a leave-one-phantom-out methodology that resulted in seven PLS models, each predicting the temperatures for all spectra in the held-out phantom. For this set of phantom-specific predicted temperatures, R2 and SEP values range from 0.67-0.99 and 0.19-0.65 °C, respectively. The stability and reproducibility of the sample-to-spectrometer interface are identified as major sources of spectral variance within and between phantoms. Overall, results from this in vitro study justify the development of future in vivo measurement technologies for applications as wearables for continuous, real-time monitoring of body temperature for both healthy and ill individuals.


Assuntos
Imagens de Fantasmas , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Humanos , Análise dos Mínimos Quadrados , Calibragem , Pele/química , Gelatina/química , Temperatura , Água/química , Dispositivos Eletrônicos Vestíveis , Emulsões/química , Óleo de Soja/química , Fosfolipídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa