Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621715

RESUMO

AIMS: To compare the species diversity and composition of indigenous yeast communities of hybrid grapes from conventionally and organically cultivated vineyards of an emerging cool-climate wine producing region. METHODS AND RESULTS: Illumina MiSeq sequences from L'Acadie blanc grape musts were processed and filtered to characterize indigenous yeast communities in organic and conventional vineyards of the Annapolis Valley wine region in Nova Scotia, Canada. While cultivation practice was not associated with yeast diversity or species richness, there was a strong effect on yeast community composition, with conventional vineyards characterized by higher proportions of Sporidiobolales and Filobasidium magnum, and organic vineyards supporting Filobasidium species other than F. magnum and higher proportions of Symmetrospora. There was also variation in yeast community composition among individual vineyards, and from year to year. CONCLUSIONS: This is the first comprehensive assessment of yeasts associated with hybrid grapes grown using different cultivation practices in a North American cool climate wine region. Communities were dominated by basidiomycete yeasts and species composition of these yeasts differed significantly between vineyards employing organic and conventional cultivation practices. The role of basidiomycete yeasts in winemaking is not well understood, but some species may influence wine characteristics.


Assuntos
Vitis , Vinho , Leveduras , Vitis/microbiologia , Vinho/microbiologia , Vinho/análise , Leveduras/genética , Leveduras/classificação , Leveduras/isolamento & purificação , Nova Escócia , Fazendas , Agricultura Orgânica
2.
World J Microbiol Biotechnol ; 40(10): 308, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172263

RESUMO

Studies have shown that a diverse and metabolically active microbiota exists throughout different stages of coffee processing, from pre- to post-harvest. This microbiota originates from both the cultivation and processing environments. Additionally, microorganisms from the soil can be found on the fruit due to the transfer between them. This study reviews the microbiota present in Arabica coffee fruits and the soils where the plants are grown. It examines how microbial profiles are related to coffee variety, altitude, cultivation region, and processing method, and establishes a connection between the microbiota in soil and fruit. A diverse microbiota was observed in both coffee fruits and soils, with similar microorganisms identified across different growing regions, processing methods, and coffee varieties. However, exclusive detections of some microorganisms were also observed. These differences highlight the influence of terroir on coffee's microbial composition, confirming that environmental conditions, genetic factors, and processing methods shape coffee microbiota. Since microbial development during coffee fermentation can affect the beverage's quality, the data presented in this review offer valuable insights for researchers and producers. Understanding the influence of processing methods, coffee varieties, and cultivation regions on coffee microbiota enables the selection of specific fermentation conditions or starter cultures to enhance terroir characteristics or adjust microbial populations to favor or introduce microorganisms beneficial for coffee quality.


Assuntos
Bactérias , Coffea , Café , Frutas , Microbiota , Microbiologia do Solo , Frutas/microbiologia , Coffea/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Café/microbiologia , Fermentação , Solo/química
3.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725210

RESUMO

There is evidence that vineyard yeast communities are regionally differentiated, but the extent to which this contributes to wine regional distinctiveness is not yet clear. This study represents the first experimental test of the hypothesis that mixed yeast communities-comprising multiple, region-specific, isolates, and species-contribute to regional wine attributes. Yeast isolates were sourced from uninoculated Pinot Noir fermentations from 17 vineyards across Martinborough, Marlborough, and Central Otago in New Zealand. New methodologies for preparing representative, mixed species inoculum from these significantly differentiated regional yeast communities in a controlled, replicable manner were developed and used to inoculate Pinot Noir ferments. A total of 28 yeast-derived aroma compounds were measured in the resulting wines via headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Yeast community region of origin had a significant impact on wine aroma, explaining ∼10% of the observed variation, which is in line with previous reports of the effects of region-specific Saccharomyces cerevisiae isolates on Sauvignon Blanc ferments. This study shows that regionally distinct, mixed yeast communities can modulate wine aroma compounds in a regionally distinct manner and are in line with the hypothesis that there is a microbial component to regional distinctiveness, or terroir, for New Zealand Pinot Noir.


Assuntos
Vitis , Vinho , Vinho/análise , Saccharomyces cerevisiae , Fermentação , Cromatografia Gasosa-Espectrometria de Massas
4.
Microb Ecol ; 85(1): 108-120, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028709

RESUMO

Bacteria have a fundamental role in determining the fitness of grapevine, the composition of grapes and the features of wines but at present, little information is available. In this work, the bacteria colonizing the different portions of grapevine (bark, leaves and grapes) were explored in the vineyards of the Alpine region of Trentino, considering the impact of different environmental and agronomical variables. The vineyards included in the work were selected based on their different geographical positions (altitude) and grapevine training systems in order to explore the whole variability of the grapevine ecosystem. Moreover, the surface amount of copper was measured on grapes and leaves during the vegetative growth. Bacterial analysis, performed using plate counts and Illumina MiSeq, revealed an increase in the concentration of grape bacteria proportional to the progress of the ripening stage. Conversely, the peak of bacterial concentration onto leaf and bark samples occurred in August, probably due to the more favourable environmental conditions. In bark samples, the bacterial microbiota reached the 7 log CFU/cm2, while 6 log UFC/g were measured in grape samples. A remarkable biodiversity was observed, with 13 phyla, 35 classes, 55 orders, 78 families and 95 genera of bacteria present. The presence of some taxa (Alphaproteobacteria, Desulfovibrionaceae, Clostriadiales, Oscillospira, Lachnospiraceae and Bacteroidales) was ubiquitous in all vineyards, but differences in terms of relative abundance were observed according to the vegetative stage, altitude of the vineyard and training system. Bacteria having oenological implication (Lactobacillus, Pediococcus and Oenococcus) were detected in grape samples collected in August, in low abundance. The data revealed a complex bacterial ecosystem inside the vineyard that, while maintaining common traits, evolves according to environmental and agronomical inputs. This study contributes to define the role of bacteria in the complex balance established in each vineyard between human actions and agricultural environment, known as terroir.


Assuntos
Microbiota , Vitis , Humanos , Fazendas , Estações do Ano , Vitis/microbiologia , Bactérias
5.
Can J Microbiol ; 69(1): 32-43, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288607

RESUMO

Wine fermentations are generally completed by the domestic yeast Saccharomyces cerevisiae, but many indigenous vineyard yeasts also influence wine flavour and aroma. Despite the flourishing wine industry in Nova Scotia, there has yet to be any systematic evaluation of these yeasts in Atlantic Canada. The yeast communities of pressed L'Acadie blanc grapes sampled from an organic vineyard in the Annapolis Valley in 2018 and 2019 were characterized before and after spontaneous fermentation by both Illumina and PacBio sequencing, to address and compare potential platform biases. Chemical and sensory evaluations were also conducted. Basidiomycete yeasts, including Vishniacozyma carnescens, Filobasidium globisporum, and Curvibasidium cygneicollum, dominated pre-fermentation diversity. Species of Saccharomyces made up ∼0.04% of sequences prior to fermentation, but 85%-100% after fermentation, with some replicates dominated by S. cerevisiae and some by S. uvarum. PacBio sequencing detected high proportions of Hanseniaspora uvarum, while Illumina sequencing did not. A better understanding of Nova Scotia vineyard yeast communities will allow local wine makers to make better use of non-traditional yeasts and spontaneous fermentations to produce high-quality wines unique to the region.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae , Fermentação , Nova Escócia , Leveduras/genética
6.
Sensors (Basel) ; 23(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36850656

RESUMO

Biogeography is a key concept associated with microbial terroir, which is responsible for the differentiation and uniqueness of wines. One of the factors influencing this microbial terroir is the vegetation, which in turn is influenced by climate, soil, and cultural practices. Remote sensing instruments can provide useful information about vegetation. This study analyses the relationship between NDVI, calculated using Sentinel-2 and Landsat-8 satellite images of different veraison dates, and microbial data obtained in 2015 from 14 commercial (organic and conventional) vineyards belonging to four Designations of Origin (DOs) from Galicia (northwest Spain). Microbial populations in grapes and musts were identified using PCR techniques and confirmed by sequencing. Statistical analyses were made using PCA, CCA, TB-PLS, and correlation analyses. This study confirms that the NDVI is positively correlated with the diversity of yeasts, both in grapes' surface and must samples. Moreover, the results of this study show: (i) Sentinel-2 images, as well as Landsat-8 images, can establish differences in NDVI related to yeast terroir in grapes and musts, as it is the most relevant DO factor, (ii) Sentinel-2 NDVI and yeast biogeography are moderately to strongly correlated, (iii) Sentinel-2 achieved a better delimitation of the DOs than Landsat-8 and can establish more accurate differences in NDVI-yeast terroir correlations, and (iv) a higher NDVI was associated with the yeast biogeographical patterns of the DOs with higher species richness (S) consisting of weakly fermenting yeasts (Hanseniaspora uvarum, Pichia spp., Starmerella bacillaris, and Zygosaccharomyces spp). However, NDVI values did not correlate well with biogeographic patterns of yeasts previously studied at frequency level (proportion or percentage of each species) in each particular DO. This study suggests that satellite imagery has the potential to be a valuable tool for wine quality management and a decision-making instrument for DO regulators and winegrowers.


Assuntos
Pichia , Tecnologia de Sensoriamento Remoto , Clima , Reação em Cadeia da Polimerase
7.
Molecules ; 28(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299031

RESUMO

The composition of bioactive polyphenols from grape canes, an important viticultural byproduct, was shown to be varietal-dependent; however, the influence of soil-related terroir factors remains unexplored. Using spatial metabolomics and correlation-based networks, we investigated how continuous changes in soil features and topography may impact the polyphenol composition in grape canes. Soil properties, topography, and grape cane extracts were analyzed at georeferenced points over 3 consecutive years, followed by UPLC-DAD-MS-based metabolomic analysis targeting 42 metabolites. Principal component analyses on intra-vintage metabolomic data presented a good reproducibility in relation to geographic coordinates. A correlation-driven approach was used to explore the combined influence of soil and topographic variables on metabolomic responses. As a result, a metabolic cluster including flavonoids was correlated with elevation and curvature. Spatial metabolomics driven by correlation-based networks represents a powerful approach to spatialize field-omics data and may serve as new field-phenotyping tool in precision agriculture.


Assuntos
Vitis , Vitis/metabolismo , Polifenóis/metabolismo , Reprodutibilidade dos Testes , Metabolômica , Solo
8.
J Sci Food Agric ; 103(12): 5802-5810, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37129999

RESUMO

BACKGROUND: Regional identity is a well-established concept of economic interest that has been identified as a source of unique quality traits of various agricultural products originating from a specific region. In the context of hops, the exploration of regional identity is still at a very early stage despite an increasing global demand for specialized aroma hops to enable more product diversity, especially in the growing craft beer industry. Thus, we conducted a large-scale investigation characterizing the growing environments of Cascade and Mosaic® hops at 39 field locations throughout two important valleys in the Pacific Northwest region of the United States to identify factors that significantly impact hop characteristics and to better understand how these impact hop regional identity. RESULTS: The Willamette Valley (Oregon) and the Yakima Valley (Washington) have distinctly different soil characteristics, soil chemistry, and climate. In turn, growers in these two regions apply unique agronomic practices in response to these differences. This investigation also revealed significant subregional differences in growing environment within each of these two valleys. Multivariate statistics, correlation, and regression analysis identified a number of environmental and agronomic factors like soil pH, the concentration of zinc, sulfur, and manganese in the soil, and the amount of applied zinc fertilization, which exhibited strong positive or negative correlations with specific hop quality traits depending on the hop variety, primarily in Oregon. CONCLUSION: This study provides new insights into understanding hop regional identity and represents an important step towards fully utilizing this effect. © 2023 Society of Chemical Industry.


Assuntos
Humulus , Humulus/química , Odorantes/análise , Ácidos/análise , Solo , Washington
9.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557951

RESUMO

To elucidate the effects of the different terroir on wine aroma in six sub-regions of Eastern Foothills of Helan Mountain in Ningxia, a premium wine-producing region in China, 71 Cabernet Sauvignon wines were investigated by gas chromatography-mass spectrometry (GC-MS), check-all-that-apply (CATA), and quantitative descriptive analysis (QDA). The bidirectional orthogonal partial least squares-discriminant analysis (O2PLS-DA) results showed that the Cabernet Sauvignon dry red wines from Xixia (XX) and Yongning (YN) had similar volatile profiles due to their geographical proximity and were characterized by higher concentrations of esters, higher alcohols, and volatile phenols because the similar aromatic profiles were detected in their dry red wines. Shizuishan (SZS) and Hongsipu (HSP) wines showed clear differences compared to the wines of the other four sub-regions, being mainly characterized by relatively higher phenolic aldehydes and volatile phenols. The concentrations of methoxypyrazines and norisoprenoids varied mainly depending on the climate diversity of the sub-regions. The highest 3-isobutyl-2-methoxypyrazine (IBMP) concentration was presented in the Helan (HL) wines. The Qingtongxia (QTX) wines have the highest ß-damascenone, which might be influenced by the fact that QTX has the lowest effective accumulated temperature and the highest sunshine duration among the five sub-regions. Esters including ethyl octanoate, ethyl decanoate, ethyl butanoate, ethyl hexanoate, and isoamyl acetate were the highest in HL. Additionally, the herbaceous, black berry, and red berry notes in HL and QTX were the most outstanding.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Bebidas Alcoólicas/análise , Fenóis/análise , Ésteres/análise , China , Vitis/química , Compostos Orgânicos Voláteis/análise
10.
J Food Sci Technol ; 59(12): 4685-4694, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36276518

RESUMO

Canastra's Minas artisanal cheese [QMA (Minas artisanal cheese)] is a protected geographical indication traditional food. The influence of fungi on the cheese ripening process is of great importance. This study aimed to apply culture-dependent and -independent methods to determine the mycobiota of QMA produced in the Canastra region, as well as to determine its physicochemical characteristics. Illumina-based amplicon sequencing and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were the culture-independent methods used. The physicochemical analysis results showed that the QMA has a moisture content ranging 18.4-28.2%, fat content ranging 20.5-40%, sodium chloride percentage of approximately 0.9%, and pH ranging 5.2-5.5. The population of fungi ranged between 6.3 and 8 log colony-forming unit/g. Fusarium spp., Geotrichum candidum, Paecilomyces spp., Trichosporon coremiiforme, Candida catenulata, Aspergillus spp., Trichosporon japonicum, Aspergillus oryzae, Kluyveromyces spp., Torulaspora spp., and Debaryomyces spp. were the most prevalent fungi. The methods used to evaluate the mycobiota provide a better understanding of which species are present in the final product and eventually contribute to the characteristics of QMA. Geotrichum candidum and C. catenulata were identified as promising species for future studies on product quality.

11.
Microb Ecol ; 82(4): 845-858, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33665722

RESUMO

Wine grape berries (Vitis spp.) harbor a wide variety of yeasts and filamentous fungi that impact grapevine health and the winemaking process. Identification of these fungi could be important for controlling and improving wine production. The use of high-throughput sequencing (HTS) strategies has enabled identification and quantification of bacterial and fungal species in vineyards. The aims of this study were to identify mycobiota from Cabernet Sauvignon and Zinfandel (V. vinifera), Carlos and Noble muscadines (V. rotundifolia), Cynthiana (V. aestivalis), and Vignoles hybrid (cross of different Vitis spp.) grapes, and investigate the effect of grape variety, location, and year on grape fungal communities. Grape berries were collected in 2016 and 2017 from four vineyards located in Arkansas. The HTS of the Internal Transcribed Spacer 1 region was used to identify grape indigenous epiphytic and endophytic fungal communities. The predominant genera identified on the Arkansas wine grapes were Uwebraunia, Zymoseptoria, Papiliotrema, Meyerozyma, Filobasidium, and Curvibasidium. Overall, the data suggested that grape fungal community distribution and relative abundance were influenced by grape variety, year, and location, but each was influenced to a different extent. Not only were grape mycobiota influenced by year, variety, and location but also it appeared that communities from the previous year impacted microbial communities the following year. For example, an increase of the mycoparasite Ampelomyces quisqualis was noticed in 2017 on grapes that carried the causal agent of powdery mildew, Erysiphe necator, in 2016, thus, amplifying the importance of vineyard microbiota knowledge for disease management and winemaking.


Assuntos
Ascomicetos , Vitis , Vinho , Arkansas , Leveduras
12.
Anal Bioanal Chem ; 413(12): 3349-3368, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33713144

RESUMO

The headspace volatile organic compound (VOC) fingerprints (volatilome) of French wine brandies were investigated by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). Protonated ethanol chemical ionization was used with dedicated experimental conditions that were previously validated for model wines. These included a reference vial containing a hydro-alcoholic solution with the same ethanol content (20% v/v) as the diluted sample spirits, which was used to establish steady-state ionization conditions. A low electric field strength to number density ratio E/N (85 Td) was used in the drift tube in order to limit the fragmentation of the protonated analytes. The obtained headspace fingerprints were used to investigate the origin of French brandies produced within a limited geographic production area. Brandies of two different vintages (one freshly distilled and one aged for 14 years in French oak barrels) were successfully classified according to their growth areas using unsupervised (principal component analysis, PCA) and supervised (partial least squares regression discriminant analysis, PLS-DA) multivariate analyses. The models obtained by PLS-DA allowed the identification of discriminant volatile compounds that were mainly characterised as key aroma compounds of wine brandies. The discrimination was supported by sensory evaluation conducted with free sorting tasks. The results showed that this ethanol ionization method was suitable for direct headspace analysis of brandies. They also demonstrated its ability to distinguish French brandies according to their growth areas, and this effect on brandy VOC composition was confirmed at a perceptive level.


Assuntos
Etanol/química , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Vinho/análise , França
13.
Adm Sci Q ; 66(4): 1084-1129, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34744172

RESUMO

Categories are organized vertically, with product categories nested under larger umbrella categories. Meaning flows from umbrella categories to the categories beneath them, such that the construction of a new umbrella category can significantly reshape the categorical landscape. This paper explores the construction of a new umbrella category and the nesting beneath it of a product category. Specifically, we study the construction of the Quebec terroir products umbrella category and the nesting of the Quebec artisanal cheese product category under this umbrella. Our analysis shows that the construction of umbrella categories can unfold entirely separately from that of product categories and can follow a distinct categorization process. Whereas the construction of product categories may be led by entrepreneurs who make salient distinctive product attributes, the construction of umbrella categories may be led by "macro actors" removed from the market. We found that these macro actors followed a goal-derived categorization process: they first defined abstract goals and ideals for the umbrella category and only subsequently sought to populate it with product categories. Among the macro actors involved, the state played a central role in defining the meaning of the Quebec terroir category and mobilizing other macro actors into the collective project, a finding that suggests an expanded role of the state in category construction. We also found that market intermediaries are important in the nesting of product categories beneath new umbrella categories, notably by projecting identities onto producers consistent with the goals of the umbrella category. We draw on these findings to develop a process model of umbrella category construction and product category nesting.

14.
Molecules ; 26(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466601

RESUMO

The aim of this work was to investigate the effect of meteorological conditions on resveratrol concentration of red wines produced in Piacenza viticultural region (Italy). In this regard, six representative estates producing Colli Piacentini Gutturnio DOC (a blend of V. vinifera L. cvs. Barbera and Croatina) vintage wines were analysed for trans- and cis-resveratrol over an 8-year period (1998-2005). Grapes were taken from the same vineyard in each estate by using the same enological practices over the entire investigated period. The meteorological conditions corresponding to the production areas were recorded, and bioclimatic indices were calculated as well. Overall, cis-resveratrol concentration was negatively correlated to Huglin index and August mean temperature, whilst positive correlation coefficients were found when considering the Selianinov index and the rainfall of September.


Assuntos
Antioxidantes/análise , Mudança Climática , Frutas/química , Resveratrol/análise , Vitis/química , Vinho/análise , Vitis/classificação
15.
World J Microbiol Biotechnol ; 37(12): 214, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34746990

RESUMO

The structural and functional diversities of the microbial ecosystem on the grape surface affect the health of berries and the flavor of wines, which are also changed by many factors such as climate, weather conditions, agronomic practices, and physiological development. To understand and explore the natural characteristics of the grape surface microbial ecosystem during ripening, the species composition and dynamics of fungal and bacterial communities on the skin of Ecolly grape were determined by Illumina Novaseq platform sequencing. The results showed that 2146 fungal OTUs and 4175 bacterial OTUs were obtained, belonging to four fungal phyla and 20 bacterial phyla. The Shannon index indicated that the fungal community had the highest species diversity at the véraison stage and the bacterial community at the harvest stage. The four dominant fungal genera during grape ripening were Alternaria, Naganishia, Filobasidium, and Aureobasidium, which accounted for 82.8% of the total fungal community, and the dominant bacterial genera included Sphingomonas, Brevundimonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and Massilia, which accounted for 77.9% of the total bacterial community. The species richness and diversity in the grape microbial ecosystem changed constantly during the maturation stages, and there were strong correlations between certain core microbial genera, which may have an important impact on the function and ecological role of the community. This study provides a basis for understanding the natural characteristics of the microbial ecosystem on the grape surface during grape ripening, as well as the sustainable production concept of the microecology driving the viticulture management system.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbiota , Vitis/microbiologia , Bactérias/classificação , Bactérias/genética , China , Ecossistema , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Fungos/classificação , Fungos/genética , Filogenia , Vitis/crescimento & desenvolvimento
16.
World J Microbiol Biotechnol ; 37(7): 112, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081209

RESUMO

Grapevine cultivars are distributed worldwide, nevertheless the fermentation of its grape berries renders distinct wine products that are highly associated to the local fungal community. Despite the symbiotic association between wine and the fungal metabolism, impacting both the terroir and mycotoxin production, few studies have explored the vineyard ecosystem fungal community using both molecular marker sequencing and mycotoxin production assessment. In this study, we investigated the fungal community of three grapevine cultivars (Vitis vinifera L.) in two tropical vineyards. Illumina MiSeq sequencing was performed on two biocompartments: grape berries (GB) and grapevine soil (GS); yielding a total of 578,495 fungal internal transcribed spacer 1 reads, which were used for taxonomic classification. GB and GS fungal communities were mainly constituted by Ascomycota phylum. GS harbors a significant richer and more diverse fungal community than GB. Among GB samples, Syrah grape berries exclusively shared fungal community included wine-associated yeasts (e.g. Saccharomycopsis vini) that may play key roles in wine terroir. Mycotoxin production assessment revealed the high potential of Aspergillus section Flavi and Penicillium section Citrina isolates to produce aflatoxin B1-B2 and citrinin, respectively. This is the first study to employ next-generation sequencing to investigate vineyard associated fungal community in Brazil. Our findings provide valuable insights on the available tools for fungal ecology assessment applied to food products emphasizing the coexistence between classical and molecular tools.


Assuntos
DNA Espaçador Ribossômico/genética , Fungos/classificação , Micotoxinas/metabolismo , Análise de Sequência de DNA/métodos , Vitis/microbiologia , Brasil , DNA Fúngico/genética , Fazendas , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Microbiologia do Solo , Clima Tropical
17.
FEMS Yeast Res ; 20(1)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830254

RESUMO

Wine is an archetypal traditional fermented beverage with strong territorial and socio-cultural connotations. Its 7000 year history is patterned by a tradition of innovation. Every value-adding innovation - whether in the vineyard, winery, supply chain or marketplace - that led to the invention of a new tradition spurred progress and created a brighter future from past developments. In a way, wine traditions can be defined as remembered innovations from the distant past - inherited knowledge and wisdom that withstood the test of time. Therefore, it should not be assumed a priori that tradition and innovation are polar opposites. The relations between the forces driven by the anchors of tradition and the wings of innovation do not necessarily involve displacement, conflict or exclusiveness. Innovation can strengthen wine tradition, and the reinvention of a tradition-bound practice, approach or concept can foster innovation. In cases where a paradigm-shifting innovation disrupts a tradition, the process of such an innovation transitioning into a radically new tradition can become protracted while proponents of divergent opinions duke it out. Sometimes these conflicting opinions are based on fact, and sometimes not. The imperfections of such a debate between the 'ancients' and the 'moderns' can, from time to time, obscure the line between myth and reality. Therefore, finding the right balance between traditions worth keeping and innovations worth implementing can be complex. The intent here is to harness the creative tension between science fiction and science fact when innovation's first-principles challenge the status quo by re-examining the foundational principles about a core traditional concept, such as terroir. Poignant questions are raised about the importance of the terroir (biogeography) of yeasts and the value of the microbiome of grapes to wine quality. This article imagines a metaphorical terroir free from cognitive biases where diverse perspectives can converge to uncork the effervescent power of territorial yeast populations as well as 'nomadic' yeast starter cultures. At the same time, this paper also engages in mental time-travel. A future scenario is imagined, explored, tested and debated where terroir-less yeast avatars are equipped with designer genomes to safely and consistently produce, individually or in combination with region-specific wild yeasts and or other starter cultures, high-quality wine according to the preferences of consumers in a range of markets. The purpose of this review is to look beyond the horizon and to synthesize a link between what we know now and what could be. This article informs readers where to look without suggesting what they must see as a way forward. In the context of one of the world's oldest fermentation industries - steeped in a rich history of tradition and innovation - the mantra here is: respect the past, lead the present and secure the future of wine.


Assuntos
Fermentação , Microbiologia de Alimentos/tendências , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Biodiversidade , Microbiota , Saccharomyces cerevisiae/genética , Vitis/microbiologia
18.
Food Microbiol ; 87: 103358, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948613

RESUMO

Microbes influence the quality of agricultural commodities and contribute to their distinctive sensorial attributes. Increasingly studies have demonstrated not only differential geographic patterns in microbial communities and populations, but that these contribute to valuable regionally distinct agricultural product identities, the most well-known example being wine. However, little is understood about microbial geographic patterns at scales of less than 100 km. For wine, single vineyards are the smallest (and most valuable) scale at which wine is asserted to differ; however, it is unknown whether microbes play any role in agricultural produce differentiation at this scale. Here we investigate whether vineyard fungal communities and yeast populations driving the spontaneous fermentation of fruit from these same vineyards are differentiated using metagenomics and population genetics. Significant differentiation of fungal communities was revealed between four Central Otago (New Zealand) Pinot Noir vineyard sites. However, there was no vineyard demarcation between fermenting populations of S. cerevisiae. Overall, this provides evidence that vineyard microbiomes potentially contribute to vineyard specific attributes in wine. Understanding the scale at which microbial communities are differentiated, and how these communities influence food product attributes has direct economic implications for industry and could inform sustainable management practices that maintain and enhance microbial diversity.


Assuntos
Fungos/isolamento & purificação , Micobioma , Vitis/microbiologia , Vinho/análise , Análise Discriminante , Fermentação , Frutas/microbiologia , Fungos/classificação , Fungos/genética , Nova Zelândia , Vinho/microbiologia
19.
Molecules ; 25(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353130

RESUMO

'Mencía'/'Jaen' it's an important red grape variety, exclusive of the Iberian Peninsula, used in wine production namely in Bierzo D.O. and Dão D.O., respectively. This work evaluates the effect of the two different "terroirs" on the phenolic composition and chromatic characteristics of 'Mencía'/'Jaen' monovarietal wines produced at an industrial scale in the same vintage. Using Principal Component Analysis (PCA), Partial Least Squares-Discrimination Analysis (PLS-DA), and Orthogonal PLS-DA (OPLS-DA) it was found that peonidin-3-coumaroylglucoside, petunidin-3-glucoside, malvidin-3-coumaroylglucoside, peonidin-3-glucoside, malvidin-3-acetylglucoside, malvidin-3-glucoside, and ferulic acid were the phenolic compounds with the highest differences between the two regions. PLS regression allowed to correlate the differences in lightness (L*) and redness (a*) of wines from 'Jaen' and 'Mencía' to differences in colored anthocyanins, polymeric pigments, total pigments, total anthocyanins, cyanidin-3-acetylglucoside, delphinidin-3-acetylglucoside, delphinidin-3-glucoside, peonidin-3-coumaroylglucoside, petunidin-3-glucoside and malvidin-3-glucoside in wines, and the colorless ferulic, caffeic, and coutaric acids, and ethyl caffeate. The wines a* values were more affected by colored anthocyanins, ferulic acid, total anthocyanins, delphinidin-3-acetylglucoside, delphinidin-3-glucoside and petunidin-3-acetylglucoside, and catechin. The positive influence of ferulic acid in the a* values and ferulic, caffeic, coutaric acids, and ethyl caffeate on the L* values can be due to the co-pigmentation phenomena. The higher dryness and lower temperatures during the September nights in this vintage might explain the differences observed in the anthocyanin content and chromatic characteristics of the wines.


Assuntos
Fenóis/análise , Vinho/análise , Análise Discriminante , Portugal , Análise de Componente Principal
20.
New Phytol ; 243(5): 1639-1641, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38702994
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa