Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Mais filtros

País como assunto
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 41(1): 2389288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134055

RESUMO

The exponential growth of therapeutic ultrasound applications demonstrates the power of the technology to leverage the combinations of transducer technology and treatment monitoring techniques to effectively control the preferred bioeffect to elicit the desired clinical effect.Objective: This review provides an overview of the most commonly used bioeffects in therapeutic ultrasound and describes existing transducer technologies and monitoring techniques to ensure treatment safety and efficacy.Methods and materials: Literature reviews were conducted to identify key choices that essential in terms of transducer design, treatment parameters and procedure monitoring for therapeutic ultrasound applications. Effective combinations of these options are illustrated through descriptions of several clinical indications, including uterine fibroids, prostate disease, liver cancer, and brain cancer, that have been successful in leveraging therapeutic ultrasound to provide effective patient treatments.Results: Despite technological constraints, there are multiple ways to achieve a desired bioeffect with therapeutic ultrasound in a target tissue. Visualizations of the interplay of monitoring modality, bioeffect, and applied acoustic parameters are presented that demonstrate the interconnectedness of the field of therapeutic ultrasound. While the clinical indications explored in this review are at different points in the clinical evaluation path, based on the ever expanding research being conducted in preclinical realms, it is clear that additional clinical applications of therapeutic ultrasound that utilize a myriad of bioeffects will continue to grow and improve in the coming years.Conclusions: Therapeutic ultrasound will continue to improve in the next decades as the combination of transducer technology and treatment monitoring techniques will continue to evolve and be translated in clinical settings, leading to more personalized and efficient therapeutic ultrasound mediated therapies.


Assuntos
Transdutores , Terapia por Ultrassom , Humanos , Terapia por Ultrassom/métodos
2.
J Ultrasound Med ; 43(6): 1131-1141, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38414281

RESUMO

OBJECTIVES: Diabetes mellitus is a complex heterogenous metabolic disease that significantly affects the world population. Although many treatments exist, including medications such as metformin, sulfonylureas, and glucagon-like peptide-1 (GLP) receptor agonist, there is growing interest in finding alternative methods to noninvasively treat this disease. It has been previously shown that low-intensity ultrasound stimulation of pancreatic ß-cells in mice can elicit insulin secretion as a potential treatment for this disease. This is desirable as therapeutic ultrasound has the ability to induce bioeffects while selectively focusing deep within tissues, allowing for modulation of hormone secretion in the pancreas to mitigate insufficient levels of insulin. METHODS: Exactly 800 kHz ultrasound with intensity 0.5 W/cm2 was administered 5 minutes continuously, that is, 100% duty cycle, to donor pancreatic human islets, followed by 1 hour incubation and RT-qPCR to assess the effect of ultrasound stimulation on gene expression. The genes were insulin (INS), glucagon (Glu), amylin (Amy), and binding immunoglobulin protein (BiP). Nine donor pancreatic human islets were used to assess insulin and glucagon secretion, while eight samples were used for amylin and BiP. Fold change (FC) was calculated to analyze the effect of ultrasound stimulation on the gene expression of the donor islet cells. High-glucose and thapsigargin-treated islets were utilized as positive controls. Cell viability testing was done using a Trypan Blue Exclusion Test. RESULTS: Ultrasound stimulation did not cause a statistically significant upregulation in any of the tested genes (INS FC = 1.15, P-value = .5692; Glu FC = 1.60, P-value = .2231; Amy FC, P-value = .2863; BiP FC = 2.68, P-value = .3907). CONCLUSIONS: The results of this study show that the proposed ultrasound treatment parameters do not appear to significantly affect gene expression of any gene tested.


Assuntos
Insulina , Ilhotas Pancreáticas , Terapia por Ultrassom , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Terapia por Ultrassom/métodos , Glucagon , Expressão Gênica/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia
3.
Osteoarthritis Cartilage ; 31(3): 317-339, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481451

RESUMO

OBJECTIVE: To investigate the effects and mechanotransduction pathways of therapeutic ultrasound on chondrocytes. METHOD: PubMed, EMBASE and Web of Science databases were searched up to 19th September 2021 to identify in vitro studies exploring ultrasound to stimulate chondrocytes for osteoarthritis (OA) treatment. Study characteristics, ultrasound parameters, in vitro setup, and mechanotransduction pathways were collected. Risk of bias was judged using the Risk of Bias Assessment for Non-randomized Studies (RoBANS) tool. RESULTS: Thirty-one studies were included comprising healthy and OA chondrocytes and explants. Most studies had high risk of performance, detection and pseudoreplication bias due to lack of temperature control, setup calibration, inadequate semi-quantitatively analyzes and independent experiments. Ultrasound was applied to the culture plate via acoustic gel, water bath or culture media. Regardless of the setup used, ultrasound stimulated the cartilage production and suppressed its degradation, although the effect size was nonsignificant. Ultrasound inhibited p38, c-Jun N-terminal kinases (JNK) and factor nuclear kappa B (NFκB) pathways in OA chondrocytes to reduce apoptosis, inflammation and matrix degradation, while triggered phosphoinositide-3-kinase/akt (PI3K/Akt), extracellular signal-regulated kinase (ERK), p38 and JNK pathways in healthy chondrocytes to promote matrix synthesis. CONCLUSION: The included studies suggest that ultrasound application induces therapeutic effects on chondrocytes. However, these results should be interpreted with caution because high risk of performance, detection and pseudoreplication bias were identified. Future studies should explore the application of ultrasound on human OA chondrocytes cultures to potentiate the applicability of ultrasound towards cartilage regeneration of knee with OA.


Assuntos
Cartilagem Articular , Osteoartrite , Terapia por Ultrassom , Humanos , Condrócitos/metabolismo , Mecanotransdução Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo
4.
BMC Cancer ; 23(1): 896, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741968

RESUMO

BACKGROUND: The dense stroma of pancreatic ductal adenocarcinomas is a major barrier to drug delivery. To increase the local drug diffusion gradient, high doses of chemotherapeutic agent doxorubicin can be released from thermally-sensitive liposomes (ThermoDox®) using ultrasound-mediated hyperthermia at the tumour target. PanDox is designed as a Phase 1 single centre study to investigate enhancing drug delivery to adult patients with non-operable pancreatic ductal adenocarcinomas. The study compares a single cycle of either conventional doxorubicin alone or ThermoDox® with focused ultrasound-induced hyperthermia for targeted drug release. METHODS: Adults with non-resectable pancreatic ductal adenocarcinoma are allocated to receive a single cycle of either doxorubicin alone (Arm A) or ThermoDox® with focused ultrasound-induced hyperthermia (Arm B), based on patient- and tumour-specific safety conditions. Participants in Arm B will undergo a general anaesthetic and pre-heating of the tumour by extra-corporal focused ultrasound (FUS). Rather than employing invasive thermometry, ultrasound parameters are derived from a patient-specific treatment planning model to reach the 41 °C target temperature for drug release. ThermoDox® is then concurrently infused with further ultrasound exposure. Tumour biopsies at the targeted site from all patients are analysed post-treatment using high performance liquid chromatography to quantify doxorubicin delivered to the tumour. The primary endpoint is defined as a statistically significant enhancement in concentration of total intra-tumoural doxorubicin, comparing samples from patients receiving liposomal drug with FUS to free drug alone. Participants are followed for 21 days post-treatment to assess secondary endpoints, including radiological assessment to measure changes in tumour activity by Positron Emission Tomography Response Criteria in Solid Tumours (PERCIST) criteria, adverse events and patient-reported symptoms. DISCUSSION: This early phase study builds on previous work targeting tumours in the liver to investigate whether enhancement of chemotherapy delivery using ultrasound-mediated hyperthermia can be translated to the stroma-dense environment of pancreatic ductal adenocarcinoma. If successful, it could herald a new approach towards managing these difficult-to-treat tumours. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04852367 . Registered 21st April 2022. EudraCT number: 2019-003950-10 (Registered 2019) Iras Project ID: 272253 (Registered 2019) Ethics Number: 20/EE/0284.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Policetídeos , Adulto , Humanos , Tomografia Computadorizada por Raios X , Doxorrubicina/uso terapêutico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Antraciclinas , Antibióticos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto , Neoplasias Pancreáticas
5.
Int J Hyperthermia ; 40(1): 2266594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37813397

RESUMO

In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Humanos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ultrassonografia , Som , Microbolhas , Imagens de Fantasmas
6.
J Ultrasound Med ; 42(8): 1699-1707, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36723381

RESUMO

OBJECTIVES: Our previous published studies have focused on safety and effectiveness of using therapeutic ultrasound (TUS) for treatment of type 2 diabetes mellitus (T2DM) in preclinical models. Here we present a set of simulation studies to explore potential ultrasound application schemes that would be feasible in a clinical setting. METHODS: Using the multiphysics modeling tool OnScale, we created two-dimensional (2D) models of the human abdomen from CT images captured from one normal weight adolescent patient, and one obese adolescent patient. Based on our previous studies, the frequency of our TUS was 1 MHz delivered from a planar unfocused transducer. We tested five different insonation angles, as well as four ultrasound intensities combined with four different duty factors and five durations of application to explore how these variables effect the peak pressure and temperature delivered to the pancreas as well as surrounding tissue in the model. RESULTS: We determined that ultrasound applied directly from the anterior of the patient abdomen at 5 W/cm2 delivered consistent acoustic pressures to the pancreas at the levels which we have previously found to be effective at inducing an insulin release from preclinical models. CONCLUSIONS: Our modeling work indicates that it may be feasible to non-invasively apply TUS in clinical treatment of T2DM.


Assuntos
Cavidade Abdominal , Diabetes Mellitus Tipo 2 , Obesidade Infantil , Humanos , Adolescente , Insulina/uso terapêutico , Pâncreas/diagnóstico por imagem
7.
J Ultrasound Med ; 42(3): 559-573, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35869903

RESUMO

Focused ultrasound is a treatment modality increasingly used for diverse therapeutic applications, and currently approved for several indications, including prostate cancers and uterine fibroids. But what about breast cancer? Breast cancer is the most common and deadliest cancer in women worldwide. While there are different treatment strategies available, there is a need for development of more effective and personalized modalities, with fewer side effects. Therapeutic ultrasound is such an option, and this review summarizes the state of the art in their use for the treatment of breast cancer and evaluate potentials of novel treatment approaches combining therapeutic ultrasound, immuno- and chemo-therapies.


Assuntos
Neoplasias da Mama , Ablação por Ultrassom Focalizado de Alta Intensidade , Leiomioma , Neoplasias da Próstata , Terapia por Ultrassom , Neoplasias Uterinas , Masculino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Imunoterapia , Resultado do Tratamento
8.
Surgeon ; 21(4): 225-229, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35927163

RESUMO

OBJECTIVE: Tibial stress injuries are challenging in terms of early diagnosis, management strategy, and safe return-to-play. In the present study, pain production associated with the application of therapeutic ultrasound (TUS) was used as a primary diagnostic tool to assess tibial bone stress injuries, and the sensitivity of this procedure was compared with Magnetic Resonance Imaging (MRI). SUBJECT AND METHODS: The study was designed as a retrospective analysis of prospectively collected data on tibial bone stress injuries in elite Track and field athletes attending the National Track and Field Athletics Centre in Thessaloniki, Greece, in the period 1995-2007. All patients underwent evaluation by TUS, and the sensitivity of the procedure was compared with MRI. RESULTS: Four of 29 athletes showed a positive TUS examination for stress injury while MRI showed normal findings. Additionally, 5 athletes evidenced MRI findings typical of a tibial bone stress injury, while TUS evaluation was negative. Using MRI as the standard, TUS displayed a sensitivity of 79.2%. CONCLUSION: Therapeutic ultrasound is a reproducible modality with satisfactory reliability and sensitivity related to MRI, and could represent a useful tool for clinicians to primarily assess suspected tibial bone stress injuries in high qualification Track and Field athletes.


Assuntos
Atletismo , Terapia por Ultrassom , Humanos , Limiar da Dor , Estudos Retrospectivos , Reprodutibilidade dos Testes , Atletas , Imageamento por Ressonância Magnética
9.
Sensors (Basel) ; 23(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896580

RESUMO

It is important to improve cerebrovascular health before the occurrence of cerebrovascular disease, as it has various aftereffects and a high recurrence rate, even with appropriate treatment. Various medical recommendations for preventing cerebrovascular diseases have been introduced, including smoking cessation, exercise, and diet. However, the effectiveness of these methods varies greatly from person to person, and their effects cannot be confirmed unless they are practiced over a long period. Therefore, there is a growing need to develop more quantitative methods that are applicable to the public to promote cerebrovascular health. Thus, in this study, we aimed to develop noninvasive and quantitative thermal stimulation techniques using ultrasound to improve cerebrovascular health and prevent cerebrovascular diseases. This study included 27 healthy adults in their 20s (14 males, 13 females). Thermal stimulation using therapeutic ultrasound at a frequency of 3 MHz was applied to the right sternocleidomastoid muscle in the supine posture for 2 min at four intensities (2.4, 5.1, 7.2, and 10.2 W/cm2). Diagnostic ultrasound was used to measure the peak systolic velocity (PSV), heart rate (HR), and pulse wave velocity (PWV) in the right common carotid artery (CCA), and the physiological changes were compared between intervention intensities. Compared to pre-intervention (preI), the PSV showed a significant increase during intervention (durI) at intensities of 7.2 W/cm2 and 10.2 W/cm2 (p = 0.010 and p = 0.021, respectively). Additionally, PWV showed a significant decrease for post-intervention (postI) at 7.2 W/cm2 and 10.2 W/cm2 (p = 0.036 and p = 0.035, respectively). However, the HR showed no significant differences at any of the intensities. The results demonstrate that an intervention at 3 MHz with an intensity of 7.2 W/cm2 or more can substantially increase cerebral blood flow and reduce arterial stiffness. Therefore, the use of therapeutic ultrasound of appropriate intensity is expected to improve the cerebral blood flow and reduce vascular stiffness to maintain cerebral blood flow at a certain level, which is closely related to the prevention and treatment of cerebrovascular diseases, thereby improving cerebrovascular health.


Assuntos
Transtornos Cerebrovasculares , Terapia por Ultrassom , Rigidez Vascular , Masculino , Adulto , Feminino , Humanos , Rigidez Vascular/fisiologia , Análise de Onda de Pulso , Circulação Cerebrovascular , Velocidade do Fluxo Sanguíneo/fisiologia
10.
Int J Hyperthermia ; 39(1): 1115-1123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36002243

RESUMO

Rationale Current hepatic locoregional therapies are limited in terms of effectiveness and toxicities. Given promising pre-clinical results, a first in-human trial was designed to assess the technical effectiveness and safety profile of histotripsy, a noninvasive, non-thermal, non-ionizing focused ultrasound therapy that creates precise, predictable tissue destruction, in patients with primary and secondary liver tumors.Methods A multicenter phase I trial (Theresa Study) was performed in a single country with 8 weeks of planned follow-up. Eight of fourteen recruited patients were deemed eligible and enrolled in the study. Hepatic histotripsy, was performed with a prototype system (HistoSonics, Inc., Ann Arbor, MI). Eleven tumors were targeted in the 8 patients who all had unresectable end-stage multifocal liver tumors: colorectal liver metastases (CRLM) in 5 patients (7 tumors), breast cancer metastases in 1 (1 tumor), cholangiocarcinoma metastases in 1 (2 tumors), and hepatocellular carcinoma (HCC) in 1 (1 tumor). The primary endpoint was acute technical success, defined as creating a zone of tissue destruction per planned volume assessed by MRI 1-day post-procedure. Safety (device-related adverse events) through 2 months was a secondary endpoint.Results The 8 patients had a median age of 60.4 years with an average targeted tumor diameter of 1.4 cm. The primary endpoint was achieved in all procedures. The secondary safety profile endpoint identified no device-related adverse events. Two patients experienced a continuous decline in tumor markers during the eight weeks following the procedure.Conclusions This first-in-human trial demonstrates that hepatic histotripsy effectively destroys liver tissue in a predictable manner, correlating very well with the planned histotripsy volume, and has a high safety profile without any device-related adverse events. Based on these results, the need for more definitive clinical trials is warranted. Trial Registration: Study to Evaluate VORTX Rx (Theresa). NCT03741088. https://clinicaltrials.gov/ct2/show/NCT03741088 KEY POINTSHistotripsy, a new noninvasive, non-thermal, non-ionizing focused ultrasound therapy, safely created a zone of tissue destruction in the liver that correlated very well with the pre-defined planned tissue destruction volume.In this first human trial histotripsy was well tolerated with no histotripsy device-related adverse events and its primary endpoint of acute technical success was achieved in all 8 enrolled patients with primary or secondary liver tumors.This new locoregional therapy for patients with liver tumors is safe and effective, warranting further trials.


Assuntos
Carcinoma Hepatocelular , Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias Hepáticas , Carcinoma Hepatocelular/etiologia , Estudos de Viabilidade , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/terapia , Pessoa de Meia-Idade
11.
Int J Hyperthermia ; 39(1): 1283-1293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36162814

RESUMO

BACKGROUND: In stereotactic radiosurgery, isodose lines must be considered to determine how surrounding tissue is affected. In thermal ablative therapy, such as laser interstitial thermal therapy (LITT), transcranial MR-guided focused ultrasound (tcMRgFUS), and needle-based therapeutic ultrasound (NBTU), how the surrounding area is affected has not been well studied. OBJECTIVE: We aimed to quantify the transition zone surrounding the ablation core created by magnetic resonance-guided robotically-assisted (MRgRA) delivery of NBTU using multi-slice volumetric 2-D magnetic resonance thermal imaging (MRTI) and subsequent characterization of the resultant tissue damage using histopathologic analysis. METHODS: Four swine underwent MRgRA NBTU using varying duration and wattage for treatment delivery. Serial MRI images were obtained, and the most representative were overlaid with isodose lines and compared to brain tissue acquired postmortem which underwent histopathologic analysis. These results were also compared to predicted volumes using a finite element analysis model. Contralateral brain tissue was used for control data. RESULTS: Intraoperative MRTI thermal isodose contours were characterized and comprehensively mapped to post-operative MRI images and qualitatively compared with histological tissue sections postmortem. NBTU 360° ablations induced smaller lesion volumes (33.19 mm3; 120 s, 3 W; 30.05 mm3, 180 s, 4 W) versus 180° ablations (77.20 mm3, 120 s, 3 W; 109.29 mm3; 180 s; 4 W). MRTI/MRI overlay demonstrated the lesion within the proximal isodose lines. The ablation-zone was characterized by dense macrophage infiltration and glial/neuronal loss as demonstrated by glial fibrillary acidic protein (GFAP) and neurofilament (NF) absence and avid CD163 staining. The transition-zone between lesion and normal brain demonstrated decreased macrophage infiltration and measured ∼345 microns (n - 3). We did not detect overt hemorrhages or signs of edema in the adjacent spared tissue. CONCLUSION: We successfully performed MRgRA NBTU ablation in swine and demonstrated minimal histologic changes extended past the ablation-zone. The lesion was characterized by macrophage infiltration and glial/neuronal loss which decreased through the transition-zone.


Assuntos
Encéfalo , Terapia por Ultrassom , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Proteína Glial Fibrilar Ácida , Fígado , Imageamento por Ressonância Magnética/métodos , Suínos
12.
Adv Exp Med Biol ; 1364: 397-409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508885

RESUMO

Focused ultrasound holds great promise in therapy for its ability to target non-invasively deep seated tissues with non-ionizing therapeutic beams. Nevertheless, brain applications have been hampered for decades by the presence of the skull. The skull indeed strongly reflects, refracts and absorbs ultrasound, which defocuses the therapeutic ultrasound beams. In this chapter, we will first show how the structure of the skull impacts the ultrasound beams and how it narrows the frequency range that can be envisioned for transcranial therapy. We will then introduce different methods that have been developed and optimized to compensate the defocusing effect of the bone. Finally, we will provide an overview of past, current and future treatments of brain disorders.


Assuntos
Encefalopatias , Terapia por Ultrassom , Encéfalo/diagnóstico por imagem , Encefalopatias/diagnóstico por imagem , Encefalopatias/terapia , Humanos , Crânio/diagnóstico por imagem , Ultrassonografia
13.
J Ultrasound Med ; 41(10): 2591-2600, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35106800

RESUMO

OBJECTIVES: This research is to investigate the anti-tumor effects by combining anti-vascular effect of microbubble enhanced ultrasound (MEUS) mechanical destruction and anti-angiogenic effect of Endostar. METHODS: Rats bearing Walker-256 tumor were randomly divided into 4 groups treated by Endostar + MEUS combination, Endostar, MEUS or Sham ultrasound (US), respectively. MEUS was induced by Sonazoid microbubble and a focused therapeutic US device. Contrast-enhanced ultrasound (CEUS) was used to assess tumor perfusion before and after treatment. Microvessel density (MVD) was evaluated with immunohistochemical staining of CD31, CD34, and VEGFA. TUNEL assay was used to determine the apoptosis rate of tumor cells. RESULTS: Endostar + MEUS combined group induced the most reduced blood perfusion and most retarded tumor growth compared with other 3 groups. Decreased MVD was shown in Endostar + MEUS, Endostar and MEUS group, but the lowest MVD value was presented in the combined treatment group. Significant increase was observed in the combined therapy group and MEUS group. CONCLUSIONS: This study showed an improved anti-vascular and anti-angiogenic effect achieved by combining Endostar and MEUS, and may provide a new method potential for anti-tumor therapy.


Assuntos
Microbolhas , Neoplasias , Terapia por Ultrassom , Animais , Endostatinas , Ratos , Proteínas Recombinantes , Ultrassonografia/métodos
14.
Lasers Med Sci ; 37(8): 3155-3167, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35648258

RESUMO

This study aimed to compare shoulder tendinopathy treatment with therapeutic ultrasound combined with LED photobiomodulation therapy using LED-infrared (850 nm) or LED-red (640 nm). The study assessed 75 patients, aged 45 to 70 years, distributed into five experimental groups (15 patients each): therapeutic ultrasound (US), infrared light irradiation (IR), visible red light irradiation (VR), infrared light and ultrasound combined (IR-US), and red light in conjunction with ultrasound (VR-US). The ultrasound parameters are 1 MHz, 0.5 W/cm2 (SATA), and 100 Hz repetition rate, applied for 4 min each session. LED irradiation protocols were as follows: 3 points, 7.5 J per point, IR-LED 750 mW, 10 s, VR-LED 250 mW, 30 s. LED irradiation is followed by ultrasound in the combined therapies. The efficiency of the five therapies was evaluated assessing 12 parameters: quality of life (Health Assessment Questionnaire, HAQ), pain intensity (Visual Analog Scale, VAS), articular amplitude of shoulder movement (flexion, extension, abduction, adduction, medial rotation, lateral rotation), muscle strength (abduction, lateral rotation), and electromyography (lateral rotation, abduction). Treatments comprised 12 sessions for 4 weeks. Intra-group analysis showed that the five therapies significantly improved the recovery of all parameters after treatment. Regarding the comparison of irradiated therapies and ultrasound, statistical analysis showed that IR-US was a better treatment than US for all 12 parameters. IR treatment exceeded US on 9 items, whereas that VR and VR-US therapies exceeded US in 7 and 10 parameters, respectively (p < 0.05). Because of that, IR-US shows to be the best treatment for rotator cuff tendinopathy. In conclusion, improvements in quality of life, pain intensity relief, shoulder amplitude motion, and muscle strength force obtained with ultrasound therapy are enhanced by adding infrared LED irradiation to ultrasound for patients suffering from rotator cuff tendinopathy. This study was registered with the Brazilian Registry of Clinical Trials (ReBEC) under Universal Trial Number (UTN) U1111-1219-3594 (2018/22/08).


Assuntos
Terapia com Luz de Baixa Intensidade , Tendinopatia , Humanos , Terapia com Luz de Baixa Intensidade/efeitos adversos , Qualidade de Vida , Amplitude de Movimento Articular , Manguito Rotador/diagnóstico por imagem , Dor de Ombro/terapia , Tendinopatia/diagnóstico por imagem , Tendinopatia/radioterapia , Resultado do Tratamento
15.
Sensors (Basel) ; 22(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36433604

RESUMO

We previously conducted an empirical study on Langevin type transducers in medical use by examining the heat effect on porcine tissue. For maximum acoustic output, the transducer was activated by a continuous sinusoidal wave. In this work, pulsed waves with various duty factors were applied to our transducer model in order to examine their effect on functionality. Acoustic power, electro-acoustic conversion efficiency, acoustic pressure, thermal effect on porcine tissue and bovine muscle, and heat generation in the transducer were investigated under various input conditions. For example, the results of applying a continuous wave of 200 VPP and a pulse wave of 70% duty factor with the same amplitude to the transducer were compared. It was found that continuous waves generated 9.79 W of acoustic power, 6.40% energy efficiency, and 24.84 kPa acoustic pressure. In pulsed excitation, the corresponding values were 9.04 W, 8.44%, and 24.7 kPa, respectively. The maximum temperature increases in bovine muscle are reported to be 83.0 °C and 89.5 °C for each waveform, whereas these values were 102.5 °C and 84.5 °C in fatty porcine tissue. Moreover, the heat generation around the transducer was monitored under continuous and pulsed modes and was found to be 51.3 °C and 50.4 °C. This shows that pulsed excitation gives rise to less thermal influence on the transducer. As a result, it is demonstrated that a transducer triggered by pulsed waves improves the energy efficiency and provides sufficient thermal impact on biological tissues by selecting proper electrical excitation types.


Assuntos
Transdutores , Ultrassom , Animais , Bovinos , Suínos , Acústica , Regulação da Temperatura Corporal , Músculos
16.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362179

RESUMO

Low-intensity pulsed ultrasound (LIPUS), a therapeutic type of ultrasound, is known to enhance bone fracture repair processes and help some tissues to heal. Here, we investigated the therapeutic potential of LIPUS for the treatment of chronic kidney disease (CKD) in two CKD mouse models. CKD mice were induced using both unilateral renal ischemia/reperfusion injury (IRI) with nephrectomy and adenine administration. The left kidneys of the CKD mice were treated using LIPUS with the parameters of 3 MHz, 100 mW/cm2, and 20 min/day, based on the preliminary experiments. The mice were euthanized 14 days after IRI or 28 days after the end of adenine administration. LIPUS treatment effectively alleviated the decreases in the body weight and albumin/globulin ratio and the increases in the serum renal functional markers, fibroblast growth factor-23, renal pathological changes, and renal fibrosis in the CKD mice. The parameters for epithelial-mesenchymal transition (EMT), senescence-related signal induction, and the inhibition of α-Klotho and endogenous antioxidant enzyme protein expression in the kidneys of the CKD mice were also significantly alleviated by LIPUS. These results suggest that LIPUS treatment reduces CKD progression through the inhibition of EMT and senescence-related signals. The application of LIPUS may be an alternative non-invasive therapeutic intervention for CKD therapy.


Assuntos
Transição Epitelial-Mesenquimal , Insuficiência Renal Crônica , Camundongos , Animais , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Biomarcadores/metabolismo , Adenina/metabolismo
17.
Dermatol Ther ; 34(1): e14648, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296553

RESUMO

Repigmentation of vitiligo relies on the proliferation and migration of melanoblasts from hair follicles to the epidermis to replenish epidermal melanin. Our previous study has demonstrated low-intensity pulsed ultrasound (LIPUS) can stimulate melanoblast migration in vitro. We sought to evaluate the potential additive efficacy and safety of LIPUS for repigmentation of vitiligo. Twenty-seven adult patients with stable generalized vitiligo on the face or trunk were recruited in this randomized, open, left-right comparison study. In each patient, two symmetric lesional sites were randomly selected; one was assigned as the target lesion, which was treated with add-on LIPUS twice weekly for 24 weeks, and the other as the control lesion, which was administrated with sham sonification. The primary outcome was the difference of repigmentation degree between the target and control lesions at week 24, based on the 7-point physician global assessment score. At the end of study, 23 patients with vitiligo on the face (n = 10) or trunk (n = 13) completed the 24-week treatment course. Enhanced repigmentation for vitiligo receiving LIPUS as compared to sham sonification was observed in 38.5% (5/13) of the patients with truncal vitiligo, but none of those with facial vitiligo. Truncal vitiligo (P = .046) and higher intensity of LIPUS administered (P = .01) were statistically significantly associated with the effectiveness of additive LIPUS treatment. The LIPUS treatment was well-tolerated without remarkable adverse effects. This pilot study showed that LIPUS could provide therapeutic benefits and could be considered as a treatment adjunct for truncal vitiligo.


Assuntos
Terapia Ultravioleta , Vitiligo , Adulto , Humanos , Projetos Piloto , Resultado do Tratamento , Ondas Ultrassônicas , Vitiligo/diagnóstico , Vitiligo/terapia
18.
Int J Hyperthermia ; 38(1): 907-915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34148489

RESUMO

BACKGROUND: High-intensity focused ultrasound (HIFU) serves as a noninvasive stereotactic system for the ablation of brain metastases; however, treatments are limited to simple geometries and energy delivery is limited by the high acoustic attenuation of the calvarium. Minimally-invasive magnetic resonance-guided robotically-assisted (MRgRA) needle-based therapeutic ultrasound (NBTU) using multislice volumetric 2-D magnetic resonance thermal imaging (MRTI) overcomes these limitations and has potential to produce less collateral tissue damage than current methods. OBJECTIVE: To correlate multislice volumetric 2-D MRTI volumes with histologically confirmed regions of tissue damage in MRgRA NBTU. METHODS: Seven swine underwent a total of 8 frontal MRgRA NBTU lesions. MRTI ablation volumes were compared to histologic tissue damage on brain sections stained with 2,3,5-triphenyltetrazolium chloride (TTC). Bland-Altman analyses and correlation trends were used to compare MRTI and TTC ablation volumes. RESULTS: Data from the initial and third swine's ablations were excluded due to sub-optimal tissue staining. For the remaining ablations (n = 6), the limits of agreement between the MRTI and histologic volumes ranged from -0.149 cm3 to 0.252 cm3 with a mean difference of 0.052 ± 0.042 cm3 (11.1%). There was a high correlation between the MRTI and histology volumes (r2 = 0.831) with a strong linear relationship (r = 0.868). CONCLUSION: We used a volumetric MRTI technique to accurately track thermal changes during MRgRA NBTU in preparation for human trials. Improved volumetric coverage with MRTI enhanced our delivery of therapy and has far-reaching implications for focused ultrasound in the broader clinical setting.


Assuntos
Neoplasias Encefálicas , Ablação por Ultrassom Focalizado de Alta Intensidade , Terapia por Ultrassom , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Suínos
19.
J Ultrasound Med ; 40(12): 2561-2570, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33491798

RESUMO

OBJECTIVE: Delivery of therapeutic agents to the cornea is a difficult task in the treatment of parasitic keratitis. In this study, we looked at using different combinations of ultrasound parameters to enhance corneal permeability to polyhexamethylene biguanide (PHMB), a clinically available ophthalmic antiparasitic formulation. METHODS: Permeability of PHMB was investigated in vitro using a standard diffusion cell setup. Continuous or 25% duty-cycle ultrasound was used at frequencies of 400 or 600 kHz, intensities of 0.5 or 0.8 W/cm2 , and exposure times ranging from 1 to 5 minutes. Structural changes in the cornea were examined using light microscopy. RESULTS: Ultrasound exposure produced increases in transcorneal delivery in every treatment parameter combination when compared to the sham treatment. The highest increase was 2.36 times for 5 minutes of continuous ultrasound at a frequency of 600 kHz and an intensity of 0.5 W/cm2 with statistical significance (p <.001). Histological analysis showed that ultrasound application only caused structural changes in the corneal epithelium, with most damage being at the surface layers. CONCLUSIONS: This study suggests the possibility of therapeutic ultrasound as a novel drug delivery technique for the treatment of parasitic keratitis. Further studies are needed to examine the thermal effects of these proposed ultrasound applications and the long-term viability of this treatment.


Assuntos
Biguanidas , Terapia por Ultrassom , Córnea/diagnóstico por imagem , Sistemas de Liberação de Medicamentos
20.
J Ultrasound Med ; 40(12): 2709-2719, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33595146

RESUMO

OBJECTIVES: Our previously published studies showed the potential of therapeutic ultrasound (US) as a novel non-pharmacological alternative for the treatment of secretory deficiencies in type 2 diabetes. Despite showing enhanced insulin release from beta cells, these studies did not explore the potential effects of US treatment on other cells in the islets of Langerhans such as glucagon-secreting alpha cells or acinar cells of the exocrine pancreas. METHODS: We applied US parameters found capable of safely stimulating insulin secretion from pancreatic beta cells (f = 800 kHz, ISPTA  = 0.5-1 W/cm2 , 5 minutes) to a diced rabbit pancreas model in culture plates (n = 6 per group). Released quantities of insulin and glucagon in response to US treatment were measured by collecting aliquots of the extracellular medium prior to the start of the treatment (t = 0 minute), immediately after treatment (t = 5 minutes) and 30 minutes after the end of treatment (t = 35 minutes). Potential release of digestive enzyme alpha-amylase as a result of US treatment was evaluated in rabbit pancreas experiments. Preliminary studies were also performed in a small number of human pancreatic islets in culture plates (n = 3 per group). The general integrity of the US-treated rabbit pancreatic tissue and human pancreatic islets was evaluated through histological analysis. RESULTS: While sham-treated rabbit pancreas samples showed decreased extracellular insulin content, there was an increase in insulin release at t = 5 minutes from samples treated with US at 800 kHz and 1 W/cm2 (P <.005). Furthermore, no further insulin release was detected at t = 35 minutes. No statistically significant difference in extracellular glucagon and alpha-amylase concentrations was observed between US-treated and sham rabbit pancreas groups. Preliminary studies in human islets appeared to follow trends observed in rabbit pancreas studies. Islet and other pancreatic tissue integrity did not appear to be affected by the US treatment. CONCLUSION: A potential US-based strategy for enhanced insulin release would require optimization of insulin secretion from pancreatic beta cells while minimizing glucagon and pancreatic enzyme secretions.


Assuntos
Diabetes Mellitus Tipo 2 , Glucagon , Animais , Insulina , Pâncreas/diagnóstico por imagem , Coelhos , alfa-Amilases
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa