Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 221: 115309, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36646200

RESUMO

To date, radiocesium (137Cs) has been considered stable in the form of pollucite mineralized through high-temperature heat treatment. This study presented a possibility through experimental results that the entire medium exists as amorphous aluminosilicate at a relatively low temperature, but cesium is partially and preferentially converted from a composite adsorbent into pollucite. Cesium lowers the eutectic point within the system and initiates the nucleation of pollucite prior to other elements. We confirmed that the partial mineral phase of cesium showed the same chemical stability as when the entire medium was converted to pollucite. X-ray absorption spectroscopy provided direct evidence for this phenomenon; also, the stability results of radioactive cesium shown through a series of sintering experiments supported the conclusion. This method can be applied as a method to immobilize radioactive cesium under relatively mild temperature conditions of atmospheric pressure, while eliminating the problem of diffusion due to its volatilization.


Assuntos
Radioisótopos de Césio , Césio , Césio/análise , Césio/química , Silicatos de Alumínio
2.
Appl Microbiol Biotechnol ; 106(5-6): 1991-2006, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35230495

RESUMO

The regulation of enzyme activity through complexation with certain metal ions plays an important role in many biological processes. In addition to divalent metals, monovalent cations (MVCs) frequently function as promoters for efficient biocatalysis. Here, we examined the effect of MVCs on the enzymatic catalysis of a recombinant γ-glutamyltranspeptidase (BlrGGT) from Bacillus licheniformis ATCC 27,811 and the application of a metal-activated enzyme to L-theanine synthesis. The transpeptidase activity of BlrGGT was enhanced by Cs+ and Na+ over a broad range of concentrations with a maximum of 200 mM. The activation was essentially independent of the ionic radius, but K+ contributed the least to enhancing the catalytic efficiency. The secondary structure of BlrGGT remained mostly unchanged in the presence of different concentrations of MVCs, but there was a significant change in its tertiary structure under the same conditions. Compared with the control, the half-life (t1/2) of the Cs+-enriched enzyme at 60 and 65 °C was shown to increase from 16.3 and 4.0 min to 74.5 and 14.3 min, respectively. The simultaneous addition of Cs+ and Mg2+ ions exerted a synergistic effect on the activation of BlrGGT. This was adequately reflected by an improvement in the conversion of substrates to L-theanine by 3.3-15.1% upon the addition of 200 mM MgCl2 into a reaction mixture comprising the freshly desalted enzyme (25 µg/mL), 250 mM L-glutamine, 600 mM ethylamine, 200 mM each of the MVCs, and 50 mM borate buffer (pH 10.5). Taken together, our results provide interesting insights into the complexation of MVCs with BlrGGT and can therefore be potentially useful to the biocatalytic production of naturally occurring γ-glutamyl compounds. KEY POINTS: • The transpeptidase activity of B. licheniformis Î³-glutamyltranspeptidase can be activated by monovalent cations. • The thermal stability of the enzyme was profoundly increased in the presence of 200 mM Cs+. • The simultaneous addition of Cs+and Mg2+ions to the reaction mixture improves L-theanine production.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/genética , Cátions Monovalentes , Glutamina , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , gama-Glutamiltransferase/química , gama-Glutamiltransferase/genética
3.
Biotechnol Appl Biochem ; 69(6): 2550-2560, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34962677

RESUMO

This study presents that covalent immobilization technique has been utilized for the immobilization of l-lactate dehydrogenase (l-LDH) from porcine on mesoporous silica. To develop mesoporous silica as support material for use in l-LDH immobilization, the particle surfaces were functionalized with 3-aminopropyltrimethoxysilane and further conjugated with glutaraldehyde. The effect of some parameters such as glutaraldehyde concentration, immobilization pH, initial enzyme concentration, and immobilization time was investigated and the optimum conditions for these parameters were determined as 1% (w/v), pH 8.0, 1 mg/ml, and 120 min, respectively. The maximum working pH and temperature for the oxidation of lactate to pyruvate reaction were determined as 10.0 and 35°C for free and 9.0 and 40°C for immobilized l-LDH, respectively. The kinetic parameters (Km and Vmax ) of l-LDH for the oxidation of lactate to pyruvate reaction were examined as 1.02 mM and 7.58 U/mg protein for free and 0.635 mM and 1.7 U/mg protein for immobilized l-LDH, respectively. Moreover, the immobilized l-LDH was 1.3-fold more stable than free l-LDH at 25°C according to calculated t1/2 values. The immobilized l-LDH retained 80% of its initial activity in a batch reactor after 14 reuses.


Assuntos
Enzimas Imobilizadas , L-Lactato Desidrogenase , Suínos , Animais , Enzimas Imobilizadas/metabolismo , Estabilidade Enzimática , L-Lactato Desidrogenase/metabolismo , Dióxido de Silício , Glutaral , Concentração de Íons de Hidrogênio , Temperatura , Lactatos , Cinética
4.
Sensors (Basel) ; 22(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36366222

RESUMO

A low electromagnetic interference (EMI), precision temperature control system for sensitive piezoelectric sensors stabilization and their thermal characteristics research was proposed. Quartz crystal microbalance (QCM) was chosen as the device to be tested. Recently, QCMs found use in many fields of study such as biology, chemistry, and aerospace. They often operate in harsh environments and are exposed to many external factors including temperature fluctuations, to which QCMs are highly susceptible. Such disturbances can cause undesirable resonant frequency shifts resulting in measurement errors that are difficult to eliminate. The proposed solution enables measurements of QCMs thermal characteristics, effectiveness evaluation of temperature compensation methods, and testing of the frequency stability. As a part of the developed solution, two independent temperature regulators were used: first to maintain the QCM crystal at desired temperature, and second to keep the QCM oscillator circuit at fixed temperature. The single regulator consists of a thermoelectric module (TEC) used for both heating and cooling. Two considered TEC driving methods were compared in terms of EMI and their impact on the QCM signal quality. The proposed system was examined for its temperature stabilization capability showing high stability of 11 mKp-p for one hour and the setpoint accuracy of ±15 mK in the full temperature range.


Assuntos
Técnicas Biossensoriais , Técnicas de Microbalança de Cristal de Quartzo , Temperatura , Técnicas de Microbalança de Cristal de Quartzo/métodos , Temperatura Baixa , Técnicas Biossensoriais/métodos
5.
Environ Res ; 191: 110099, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866495

RESUMO

A composite adsorbent for the removal of radioactive cesium (137Cs) was synthesized by immobilizing potassium cobalt ferrocyanide in the micro pores of the zeolite chabazite. The synthetically optimized composite adsorbent demonstrates a rapid cesium adsorption rate under both salt-free and high-salt conditions with a high distribution coefficient of cesium (≥105 mL/g). Although both components have the same ion-exchange reaction between potassium and cesium, the reaction by ferrocyanide component was predominant, which derived hundred times higher distribution coefficient of the composite adsorbent than that of pure chabazite. A thermal stabilization process was studied for improving the storage and/or disposal stability of the spent adsorbent. The formation of a eutectic system within the spent adsorbent reduced the stabilization temperature to 1000 °C from 1200 °C. Accordingly, the leaching of cesium was remarkably reduced by the remineralization to the stable pollucite. The stable impregnation of ferrocyanide component in the chabazite pores derived the reduction of cesium volatility enabling the high temperature stabilization method. Our experimental results provide evidence that the composite adsorbent has clear advantages on the cesium removal from contaminated water and its stabilization via thermal-treatment.


Assuntos
Césio , Radioatividade , Adsorção , Água , Poluição da Água
6.
Molecules ; 24(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117205

RESUMO

Cellulose, as one of the most abundant natural biopolymers, has been widely used in textile industry. However, owing to its drawbacks of flammability and ignitability, the large-scale commercial application of neat cellulose is limited. This study investigated some TEMPO-oxidized cellulose (TOC) which was prepared by selective TEMPO-mediated oxidation and ion exchange. The prepared TOC was characterized by Fourier transform infrared (FT-IR) spectroscopy and solid-state 13C-nuclear magnetic resonance (13C-NMR) spectroscopy. The thermal stability and combustion performance of TOC were investigated by thermogravimetry analysis (TG), microscale combustion calorimetry (MCC) and limiting oxygen index (LOI). The results demonstrated that the thermal stability of TOC was less than that of the pristine material cellulose, but the peak of heat release rate (pHHR) and the total heat release (THR) of all TOC were significantly reduced. Additionally, the LOI values of all TOC products were much higher 25%. In summary, the above results indicated that the modified cellulose with carboxyl groups and metal ions by selective oxidation and ion exchange endows efficient flame retardancy.


Assuntos
Celulose/química , Óxidos N-Cíclicos/química , Retardadores de Chama , Celulose/análogos & derivados , Celulose/síntese química , Cromatografia por Troca Iônica , Estabilidade Enzimática , Temperatura Alta , Troca Iônica , Espectroscopia de Ressonância Magnética , Oxirredução , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Molecules ; 23(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189644

RESUMO

The anticancer drug daunomycin exerts its influence by multiple strategies of action to interfere with gene functioning. Besides inhibiting DNA/RNA synthesis and topoisomerase-II, it affects the functional pathway of telomere maintenance by the telomerase enzyme. We present evidence of the binding of daunomycin to parallel-stranded tetramolecular [d-(TTGGGGT)]4 guanine (G)-quadruplex DNA comprising telomeric DNA from Tetrahymena thermophilia by surface plasmon resonance and Diffusion Ordered SpectroscopY (DOSY). Circular Dichroism (CD) spectra show the disruption of daunomycin dimers, suggesting the end-stacking and groove-binding of the daunomycin monomer. Proton and phosphorus-31 Nuclear Magnetic Resonance (NMR) spectroscopy show a sequence-specific interaction and a clear proof of absence of intercalation of the daunomycin chromophore between base quartets or stacking between G-quadruplexes. Restrained molecular dynamics simulations using observed short interproton distance contacts depict interaction at the molecular level. The interactions involving ring A and daunosamine protons, the stacking of an aromatic ring of daunomycin with a terminal G6 quartet by displacing the T7 base, and external groove-binding close to the T1⁻T2 bases lead to the thermal stabilization of 15 °C, which is likely to inhibit the association of telomerase with telomeres. The findings have implications in the structure-based designing of anthracycline drugs as potent telomerase inhibitors.


Assuntos
Antibióticos Antineoplásicos/química , DNA de Protozoário/química , DNA de Protozoário/genética , Daunorrubicina/química , Quadruplex G , Telômero/genética , Tetrahymena/genética , Antibióticos Antineoplásicos/farmacologia , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Daunorrubicina/farmacologia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Desnaturação de Ácido Nucleico
8.
Biochim Biophys Acta Gen Subj ; 1861(2): 37-48, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27838396

RESUMO

BACKGROUND: Telomere elongation by telomerase gets inhibited by G-quadruplex DNA found in its guanine rich region. Stabilization of G-quadruplex DNA upon ligand binding has evolved as a promising strategy to target cancer cells in which telomerase is over expressed. METHODS: Interaction of anti-leukemic alkaloid, coralyne, to tetrameric parallel [d(TTGGGGT)]4 (Ttel7), [d(TTAGGGT)]4 (Htel7) and monomeric anti-parallel [dGGGG(TTGGGG)3] (Ttel22) G-quadruplex DNA has been studied using Circular Dichroism (CD) spectroscopy. Titrations of coralyne with Ttel7 and Htel7 were monitored by 1H and 31P NMR spectroscopy. Solution structure of coralyne-Ttel7 complex was obtained by restrained Molecular Dynamics (rMD) simulations using distance restraints from 2D NOESY spectra. Thermal stabilization of DNA was determined by absorption, CD and 1H NMR. RESULTS AND CONCLUSIONS: Binding of coralyne to Ttel7/Htel7 induces negative CD band at 315/300nm. A significant upfield shift in all GNH, downfield shift in T2/T7 base protons and upfield shift (1.8ppm) in coralyne protons indicates stacking interactions. 31P chemical shifts and NOE contacts of G3, G6, T2, T7 protons with methoxy protons reveal proximity of coralyne to T2pG3 and G6pT7 sites. Solution structure reveals stacking of coralyne at G6pT7 and T2pG3 steps with two methoxy groups of coralyne located in the grooves along with formation of a hydrogen bond. Binding stabilizes Ttel7/Htel7 by ~25-35°C in 2:1 coralyne-Ttel7/Htel7 complex. GENERAL SIGNIFICANCE: The present study is the first report on solution structure of coralyne-Ttel7 complex showing stacking of coralyne with terminal guanine tetrads leading to significant thermal stabilization, which may be responsible for telomerase inhibition.


Assuntos
Alcaloides/química , Alcaloides de Berberina/química , DNA/química , Guanina/química , Dicroísmo Circular , Quadruplex G , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Prótons , Telomerase/química , Telômero/química
9.
Chembiochem ; 17(7): 554-60, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26762575

RESUMO

The interaction of the anthraquinone derivative mitoxantrone, a semisynthetic anti-cancer drug with two non-planar side chains, with heptamer G-quadruplex d(TTAGGGT)4 , which contains the human telomere DNA sequence, was evaluated by differential scanning calorimetry, fluorescence Job plotting, absorption, and NMR and CD spectroscopy. Binding led to thermal stabilization of DNA (ΔTm =13-20 °C). The spectra revealed that two mitoxantrone molecules bind externally at two sites of the DNA quadruplex as monomers, by partial insertion of the chromophore and side-chain interaction at the grooves. The inhibition of telomerase (IC50 =2 µM), as determined by a TRAP assay, can be attributed to thermal stabilization of the DNA quadruplex because of the interactions with mitoxantrone. The studies revealed highly specific molecular recognition between a ligand and a parallel-stranded G-quadruplex; this might serve as a platform for the rational design of new drugs.


Assuntos
Quadruplex G , Mitoxantrona/química , Telomerase/antagonistas & inibidores , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Mitoxantrona/farmacologia , Ligação Proteica , Estabilidade Proteica , Telomerase/metabolismo , Temperatura
10.
Bioorg Med Chem Lett ; 26(20): 4915-4918, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27624081

RESUMO

Stabilization of G-quadruplex DNA structures in human telomeric and proto-oncogenic promoter regions upon ligand binding has evolved as a viable anti-cancer strategy. We have studied interaction of coralyne, a human telomerase inhibiting protoberberine alkaloid, with parallel stranded tetrameric G-quadruplex DNA [d(T2G4T)]4 using Circular Dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. Appearance of induced CD band and the Diffusion Ordered NMR Spectroscopy (DOSY) experiments confirm the formation of well defined coralyne-DNA complex. 1H and 31P NMR studies reveal that coralyne specifically recognizes T2pG3 and G6pT7 steps in DNA. Guanine imino protons indicate that coralyne binding induces thermal stabilization of the G-quadruplex DNA by >20°C. The observed specific changes and thermal stabilization of DNA upon binding may be attributed to inhibition of telomerase by coralyne.


Assuntos
Alcaloides de Berberina/química , DNA/química , Quadruplex G , Espectroscopia de Ressonância Magnética/métodos , Dicroísmo Circular
11.
Biotechnol Appl Biochem ; 63(4): 546-52, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26011544

RESUMO

The thermal stability of the Aspergillus oryzae ß-d-galactosidase (ß-gal) was evaluated at 60 °C. The stability of ß-gal was dependent on the pH, buffer, and additives. The ß-gal exhibited its highest thermal stability in a 0.02 M phosphate buffer pH 6. Among all the tested additives, galactose, a competitive inhibitor of ß-gal, was the upmost thermal stabilizer. A 0.15 M galactose solution caused ß-gal to retain a whole of 98.65% of its initial activity after incubation at 60 °C for 2 H. The second best thermal stabilizer of ß-gal was raffinose. A 0.15 M raffinose-ß-gal mixture retained 84.41% of its initial activity after incubation at 60 °C for 2 H, whereas the control retained only 61.02%. The results of this study also revealed that all the tested positively charged polymers (diethylaminoethyl [DEAE] dextran and polyethyleneimine [PEI] 800, 2,000, 750,000 Da) significantly destabilized ß-gal. However, these positively charged polymers exerted different effects on the ß-gal's activity. PEI 750,000 significantly activated the enzyme, while DEAE dextran and PEI 800 did not exert any significant effects on the ß-gal's activity. Nevertheless, PEI 2,000 significantly activated the enzyme.


Assuntos
Aspergillus oryzae/enzimologia , Temperatura , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Aminoácidos/farmacologia , Soluções Tampão , Carboidratos/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Polímeros/farmacologia
12.
Molecules ; 21(6)2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27304947

RESUMO

An efficient and easy-to-perform method was developed for immobilization of CaLB on mesoporous aminoalkyl polymer supports by bisepoxide activation. Polyacrylate resins (100-300 µm; ~50 nm pores) with different aminoalkyl functional groups (ethylamine: EA and hexylamine: HA) were modified with bisepoxides differing in the length, rigidity and hydrophobicity of the units linking the two epoxy functions. After immobilization, the different CaLB preparations were evaluated using the lipase-catalyzed kinetic resolution (KR) of racemic 1-phenylethanol (rac-1) in batch mode and in a continuous-flow reactor as well. Catalytic activity, enantiomer selectivity, recyclability, and the mechanical and long-term stability of CaLB immobilized on the various supports were tested. The most active CaLB preparation (on HA-resin activated with 1,6-hexanediol diglycidyl ether-HDGE) retained 90% of its initial activity after 13 consecutive reaction cycles or after 12 month of storage at 4 °C. The specific rate (rflow), enantiomer selectivity (E) and enantiomeric excess (ee) achievable with the best immobilized CaLB preparations were studied as a function of temperature in kinetic resolution of rac-1 performed in continuous-flow packed-bed bioreactors. The optimum temperature of the most active HA-HDGE CaLB in continuous-flow mode was 60 °C. Although CaLB immobilized on the glycerol diglycidyl ether (GDGE)-activated EA-resin was less active and less selective, a much higher optimum temperature (80 °C) was observed with this form in continuous-flow mode KR of rac-1.


Assuntos
Catálise , Estabilidade Enzimática , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Aminas/química , Álcoois Benzílicos/química , Reatores Biológicos , Candida/enzimologia , Enzimas Imobilizadas/metabolismo , Compostos de Epóxi/química , Etilaminas/química , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Estereoisomerismo , Temperatura
13.
Artigo em Inglês | MEDLINE | ID: mdl-38662917

RESUMO

Poor fluorescence recovery at low analyte dosages and slow ligand binding kinetics are critical challenges currently limiting the use of aptamer-functionalized hydrogels for sensing small molecules. In this paper, we report an adenosine-responsive hydrogel sensor that integrates FRET-signaling aptamer switches into in situ-gelling thin-film hydrogels. The hydrogel sensor is able to entrap a high proportion of the sensing probes (>70% following vigorous washing), delay nucleolytic degradation, stabilize weak aptamer complexes to improve hybridization affinity and suppress fluorescence background, and provide high sensitivity in biological fluids (i.e., undiluted human serum). Furthermore, the developed hydrogel sensors were able to achieve low limits of detection (5.3 µM in buffer and 8.8 µM in serum) within 4 min of exposure to the sample, with signal generation requiring only 20 µL/well of analyte sample. The physical nature of the aptamer encapsulation allows this approach to accommodate virtually any small-molecule aptamer, avoiding the need for covalent anchoring and the complex modification of nucleic acid sequences typically required for effective aptamer-based molecular recognition.

14.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174595

RESUMO

Ligand binding to G-quadruplex (G4) structures at human telomeric DNA ends promotes thermal stabilization, disrupting the interaction of the telomerase enzyme, which is found active in 80-85% of cancers and serves as a molecular marker. Anthraquinone compounds are well-known G-quadruplex (G4) binders that inhibit telomerase and induce apoptosis in cancer cells. Our current investigation is based on 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione, a derivative of anthraquinone and its binding characterization with two different human telomeric DNA structures, wHTel26 and HTel22, in the effect of K+ and Na+ by using an array of biophysical, calorimetry, molecular docking and cell viability assay techniques. Binding constants (Kb) in the range of ∼105-107 M-1 and stoichiometries of 1:1, 2:1 & 4:1 were obtained from the absorbance, fluorescence, and circular dichroism study. Remarkable hypochromism (55, 97%) and ∼17 nm shift in absorbance, fluorescence quenching (95, 97%), the unaltered value of fluorescence lifetime, restoration of Circular Dichroism bands, absence of ICD band, indicated the external groove binding/binding somewhere at loops. This is also evident in molecular docking results, the ligand binds to groove forming base (G4, G5, G24, T25) and in the vicinity to TTA loop (G14, G15, T17) bases of wHTel26 and HTel22, respectively. Thermal stabilization induced by ligand was found greater in Na+ ion (27.5 °C) than (19.1 °C) in K+ ion. Ligand caused cell toxicity in MCF-7 cancer cell lines with an IC50 value of ∼8.4 µM. The above findings suggest the ligand, 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione could be a potent anticancer drug candidate and has great therapeutic implications.Binding of disubstituted amido anthraquinone derivative, 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione to human telomere HTel22 antiparallel conformation induced thermal stabilization.Communicated by Ramaswamy H. Sarma.

15.
Biomed Pharmacother ; 163: 114773, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37156116

RESUMO

p53 is a transcription factor that activates the expression of various genes involved in the maintenance of genomic stability, and more than 50% of cancers harbor inactivating p53 mutations, which are indicative of highly aggressive cancer and poor prognosis. Pharmacological targeting of mutant p53 to restore the wild-type p53 tumor-suppressing function is a promising strategy for cancer therapy. In this study, we identified a small molecule, Butein, that reactivates mutant p53 activity in tumor cells harboring the R175H or R273H mutation. Butein restored wild-type-like conformation and DNA-binding ability in HT29 and SK-BR-3 cells harboring mutant p53-R175H and mutant p53-R273H, respectively. Moreover, Butein enabled the transactivation of p53 target genes and decreased the interactions of Hsp90 with mutant p53-R175H and mutant p53-R273H proteins, while Hsp90 overexpression reversed targeted p53 gene activation. In addition, Butein induced thermal stabilization of wild-type p53, mutant p53-R273H and mutant p53-R175H, as determined via CETSA. From docking study, we further proved that Butein binding to p53 stabilized the DNA-binding loop-sheet-helix motif of mutant p53-R175H and regulated its DNA-binding activity via an allosteric mechanism, conferring wild-type-like the DNA-binding activity of mutant p53. Collectively, the data suggest that Butein is a potential antitumor agent that restores p53 function in cancers harboring mutant p53-R273H or mutant p53-R175H. SIGNIFICANCE: Butein restores the ability of mutant p53 to bind DNA by reversing its transition to the Loop3 (L3) state, endows p53 mutants with thermal stability and re-establishes their transcriptional activity to induce cancer cell death.


Assuntos
Transformação Celular Neoplásica , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Mutação/genética
16.
Methods Mol Biol ; 2709: 117-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37572276

RESUMO

Cold-chain storage can be challenging and expensive for the transportation and storage of biologics, especially in low-resource settings. Nucleic acid nanoparticles (NANPs) are an example of new biological products that require refrigerated storage. Light-assisted drying (LAD) is a new processing technique to prepare biologics for anhydrous storage in a trehalose amorphous solid matrix at ambient temperatures. Small volume samples (10 µL) containing NANPs are irradiated with a 1064 nm laser to speed the evaporation of water and create an amorphous trehalose preservation matrix. In previous studies, samples were stored for 1 month at 4 °C or 20 °C without degradation. A FLIR SC655 mid-IR camera is used to record the temperature of samples during processing. The trehalose matrix was characterized using polarized light imaging to determine if crystallization occurred during processing or storage. Damage to LAD-processed NANPs was assessed after processing and storage using gel electrophoresis.


Assuntos
Nanopartículas , Temperatura , Ácidos Nucleicos/química , Nanopartículas/química , Produtos Biológicos/química , Dessecação/instrumentação , Dessecação/métodos , Preservação Biológica/instrumentação , Preservação Biológica/métodos
17.
Front Nutr ; 10: 1097775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937337

RESUMO

Thermal stabilization is efficient for slowing lipid degradation and prolonging the shelf life of highland barley, but the impacts of different thermal stabilized treatments on highland barley and possible chemical reactions remain unclear. The effects of thermal stabilization treatments (bake, far-infrared, fry, microwave and steam) on the enzymes, lipids and aroma profiles of highland barley flour (HBF) were investigated in this study. Thermal stabilization significantly decreased the contents of ash and GABA. Baked HBF exhibited the lowest fatty acid value and peroxide value. Untreated HBF had higher lipase and lipoxygenase activities and fried mostly inactivated these enzymes. All thermal stabilization treatments increased the catalase activities and fried showed the higher level. Thus, fried might be an effective method to stabilize the HBF. The high temperatures during stabilizing triggered the complex reactions, leading to the loss of some volatile compounds, and in the meantime the formation of others such as furans and aldehydes. These productions contributed to the unique aroma profiles of different HBFs. Furthermore, a chemometric approach was used to analyze the changes of thermal stabilized treated HBFs and to identity six key volatile compounds, which provided important knowledge on possible chemical reactions caused by thermal stabilization. Overall, these results provide the theoretical basis for the wider application of thermal stabilization technologies in highland barley processing.

18.
Antioxidants (Basel) ; 12(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37237898

RESUMO

Preeclampsia is a pregnancy-related disease with poor placentation and presents itself through hypertension and proteinuria. The disease is also associated with the oxidative modification of proteins in maternal blood plasma. In this work, we combine differential scanning calorimetry (DSC), capillary electrophoresis, and atomic force microscopy (AFM) to evaluate the changes in the plasma denaturation profiles of patients with preeclampsia (PE) as compared with those of pregnant controls. Our results demonstrate that the last trimester of pregnancy substantially affects the main calorimetric characteristics of blood plasma from pregnant controls relative to nonpregnant women. These variations correlate well with the changes in protein levels determined by electrophoresis. DSC analysis revealed significant deviations in the plasma heat capacity profiles of preeclamptic patients from those of pregnant controls. These alterations are expressed mainly in a substantial reduction in albumin-assigned transitions and an upward shift in its denaturation temperature, lower calorimetric enthalpy changes, and a reduced ratio of heat capacity in the albumin/globulin-assigned thermal transitions, which are more pronounced in severe PE cases. The in vitro oxidation model shows that the alteration of PE thermograms is partly related to protein oxidation. AFM data detected numerous aggregate formations in the plasma of PE samples and fewer small ones in the pregnant controls, which are not found in healthy nonpregnant samples. These findings could serve as a basis for further investigations to reveal the possible relationship between albumin thermal stabilization, the increased inflammatory state and oxidative stress, and protein misfolding in preeclampsia.

19.
Materials (Basel) ; 15(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35683279

RESUMO

The structural changes occurring in tialite due to the formation of magnesium-titanate-aluminum-titanate solid solutions were determined. For this purpose, a DFT simulation of the structural changes was performed. The simulation proposed a number of possible atomic substitutions occurring in the elementary cells of the tialite, along with calculations of the lattice parameter changes in this material. Next, the actual changes occurring in the structure of the tialite due to the formation of solid solutions, obtained in different ways, were investigated. After comparing the obtained results, it was possible to confirm the mechanism of the formation of tialite solid solutions, through which one magnesium atom and one titanium atom substituted two aluminum atoms simultaneously. The results of this experimental work were confirmed by theoretical calculations (the differences in the values of the lattice parameters, measured in the experiment and calculated in the simulation, were less than 0.5%), through which changes in the lattice parameters with Mg and Ti substitution were observed.

20.
Biopreserv Biobank ; 20(5): 451-460, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067075

RESUMO

Background: Cold-chain storage can be challenging and expensive for the transportation and storage of biologics, especially in low-resource settings. Nucleic acid nanoparticles (NANPs) are an example of new biological products that require refrigerated storage. Light-assisted drying (LAD) is a new processing technique to prepare biologics for anhydrous storage in a trehalose amorphous solid matrix at ambient temperatures. In this study, LAD was used to thermally stabilize four types of NANPs with differing structures and melting temperatures. Methods: Small volume samples (10 µL) containing NANPs were irradiated with a 1064 nm laser to speed the evaporation of water and create an amorphous trehalose preservation matrix. Samples were then stored for 1 month at 4°C or 20°C. A FLIR C655 mid-IR camera was used to record the temperature of samples during processing. The trehalose matrix was characterized using polarized light imaging (PLI) to determine if crystallization occurred during processing or storage. Damage to LAD-processed NANPs was assessed after processing and storage using gel electrophoresis. Results: Based on the end moisture content (EMC) as a function time and the thermal histories of samples, a LAD processing time of 30 min is sufficient to achieve low EMCs for the 10 µL samples used in this study. PLI demonstrates that the trehalose matrix was resistant to crystallization during processing and after storage at 4°C and at room temperature. The native-polyacrylamide gel electrophoresis results for DNA cubes, RNA cubes, and RNA rings indicate that the main structures of these NANPs were not damaged significantly after LAD processing and being stored at 4°C or at room temperature for 1 month. Conclusions: These preliminary studies indicate that LAD processing can stabilize NANPs for dry-state storage at room temperature, providing an alternative to refrigerated storage for these nanomedicine products.


Assuntos
Produtos Biológicos , Nanopartículas , Ácidos Nucleicos , Trealose , RNA , Liofilização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa