Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 226(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688286

RESUMO

The star-nosed mole (Condylura cristata) is renowned for its densely innervated 22 appendage star-like rostrum ('star') specialized for tactile sensation. As a northerly distributed insectivorous mammal exploiting aquatic and terrestrial habitats, these vascularized nasal rays are regularly exposed to cold water and thermally conductive soil, leading us to ask whether the star surface temperature, a proxy for blood flow, conforms to the local ambient temperature to conserve body heat. Alternatively, given the exquisite sensory nature of the star, we posited that the uninsulated rays may be kept warm when foraging to maintain high mechanosensory function. To test these hypotheses, we remotely monitored surface temperatures in wild-caught star-nosed moles. Although the tail acted as a thermal window exhibiting clear vasoconstriction/vasodilation, the star varied passively in surface temperature, with little evidence for thermoregulatory vasomotion. This thermoconforming response may have evolved to minimize conductive heat loss to the water or wet soils when foraging.


Assuntos
Toupeiras , Animais , Toupeiras/fisiologia , Eulipotyphla , Nariz , Tato/fisiologia , Regulação da Temperatura Corporal/fisiologia , Solo
2.
J Exp Biol ; 226(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651227

RESUMO

We used thermal imaging to show that two environmental factors - acute stress and diet - influence thermoregulatory performance of a known thermal window, the avian bill. The bill plays important roles in thermoregulation and water balance. Given that heat loss through the bill is adjustable through vasoconstriction and vasodilation, and acute stress can cause vasoconstriction in peripheral body surfaces, we hypothesized that stress may influence the bill's role as a thermal window. We further hypothesized that diet influences heat dissipation from the bill, given that body condition influences the surface temperature of another body region (the eye region). We measured the surface temperature of the bills of song sparrows (Melospiza melodia) before, during and after handling by an observer at 37°C ambient temperature. We fed five birds a restricted diet intended to maintain body mass typical of wild birds, and we fed six birds an unrestricted diet for 5 months prior to experiments. Acute stress caused a decrease in the surface temperature of the bill, resulting in a 32.4% decrease in heat dissipation immediately following acute stress, before recovering over approximately 2.3 min. The initial reduction and subsequent recovery provide partial support for the hemoprotective and thermoprotective hypotheses, which predict a reduction or increase in peripheral blood flow, respectively. Birds with unrestricted diets had larger bills and dissipated more heat, indicating that diet and body condition influence bill-mediated heat dissipation and thermoregulation. These results indicate that stress-induced vascular changes and diet can influence mechanisms of heat loss and potentially inhibit optimal thermoregulation.


Assuntos
Pardais , Animais , Animais Selvagens , Regulação da Temperatura Corporal/fisiologia , Dieta/veterinária , Pardais/fisiologia , Temperatura
3.
J Exp Biol ; 226(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752123

RESUMO

Body temperature regulation under changes in ambient temperature involves adjustments in heat production and heat exchange rates between the animal and the environment. One mechanism involves the modulation of the surface temperature of specific areas of the body through vasomotor adjustment. In homeotherms, this thermoregulatory adjustment is essential for the maintenance of body temperature over a moderate temperature range, known as the thermal neutral zone (TNZ). The bill of the toco toucan (Ramphastos toco) has been described as a highly efficient thermal window and hypothesized to assist in the thermal homeostasis of this bird. Herein, we directly evaluated the contribution of heat exchange through the bill of the toco toucan and role of the bill in the delimitation of the TNZ. To do this, we measured metabolic rate (MR), via oxygen consumption, over a range of ambient temperatures from 0 to 35°C. MR measurements were made in birds with the bill intact and with the bill insulated. The limits of the TNZ did not differ between treatments, ranging from 10.8 to 25.0°C. The MR differed among treatments only at elevated temperatures (30 and 35°C), reaching 0.92±0.11 ml O2 g-1 h-1 (mean±s.d.) for the intact group and 1.13±0.13 ml O2 g-1 h-1 for the insulated group. These results indicate that although heat dissipation through the bill does not contribute significantly to widening of the TNZ, it may well be critically important in assisting body temperature regulation at higher temperatures extending above the upper limit of the TNZ.


Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Animais , Temperatura , Regulação da Temperatura Corporal/fisiologia , Termogênese , Aves/fisiologia
4.
J Therm Biol ; 99: 103023, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420646

RESUMO

This study determined the physiological and metabolic responses of cultivated Yellowtail Kingfish (Seriola lalandi) juveniles in accordance with their recent thermal history. The fish were acclimated at 20, 23, 26, 29 and 32 °C for 21 days to determine the final preferred temperature, thermal tolerance and the effect of acclimation temperatures on their oxygen uptake and aerobic scope. The final preferred temperature of juveniles was established at 26 °C. The critical thermal maximum (CTmax) ranged from 34.2 to 36.9 °C, while the critical thermal minimum (CTmin) ranged from 10.9 to 17.3 °C, depending on acclimation temperature. With the CTmax and CTmin values, the thermal window was determined to have an area of 258°C2, which is characteristic of subtropical organisms. Although, the metabolic rate was relatively constant (ranging 390.6-449.8 mg O2 kg-0.8 h-1) between 20 and 26 °C (Q10 = 1.6, 1.0), an increase to 544.8 mg O2 kg-0.8 h-1 at 29 °C (Q10 = 1.9) and decrease of 478.4 mg O2 kg-0.8 h-1 at 32 °C (Q10 = 0.6) were observed. The maximum value obtained for aerobic scope was 310.9 mg O2 kg-0.8 h-1 at 26 °C. These results suggest that the acclimation temperature of 26 °C is an optimum thermal condition for a physiological and metabolic performance of yellowtail kingfish juveniles. On the contrary, the response observed during the evaluation of critical temperatures, oxygen uptake and aerobic scope indicated that yellowtail kingfish in the juvenile state could be vulnerable when it experiences for long periods (e.g., >21 days) temperatures above 29 °C. According to our results, the thermoregulatory behaviour of yellowtail kingfish in the juvenile stages could be one of the most important mechanisms to maintain its optimal physiological performance by actively selecting a stable thermal environment close to 26 °C. In addition, it was determined the limits of the pejus state of juvenile yellowtail kingfish at 29 °C, where an increase of oxygen uptake to maintain the aerobic energy metabolism was observed, this could certainly affect the growth of juveniles in culture systems if they do not return in a thermal range of 23-26 °C. These results can contribute to infer the different effects of acclimation temperature on the growth, thermal tolerance and respiratory capacity of S. lalandi juveniles on aquaculture systems.


Assuntos
Aclimatação , Peixes/metabolismo , Consumo de Oxigênio , Oxigênio/metabolismo , Termotolerância , Criação de Animais Domésticos , Animais , Temperatura
5.
J Therm Biol ; 94: 102776, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33292974

RESUMO

Global warming increasingly challenges thermoregulation in endothermic animals, particularly in hot and dry environments where low water availability and high temperature increase the risk of hyperthermia. In birds, un-feathered body parts such as the head and bill work as 'thermal windows', because heat flux is higher compared to more insulated body regions. We studied how such structures were used in different thermal environments, and if heat flux properties change with time in a given temperature. We acclimated zebra finches (Taeniopygia guttata) to two different ambient temperatures, 'cold' (5 °C) and 'hot' (35 °C), and measured the response in core body temperature using a thermometer, and head surface temperature using thermal imaging. Birds in the hot treatment had 10.3 °C higher head temperature than those in the cold treatment. Thermal acclimation also resulted in heat storage in the hot group: core body temperature was 1.1 °C higher in the 35 °C group compared to the 5 °C group. Hence, the thermal gradient from core to shell was 9.03 °C smaller in the hot treatment. Dry heat transfer rate from the head was significantly lower in the hot compared to the cold treatment after four weeks of thermal acclimation. This reflects constraints on changes to peripheral circulation and maximum body temperature. Heat dissipation capacity from the head region increased with acclimation time in the hot treatment, perhaps because angiogenesis was required to reach peak heat transfer rate. We have shown that zebra finches meet high environmental temperature by heat storage, which saves water and energy, and by peripheral vasodilation in the head, which facilitates dry heat loss. These responses will not exclude the need for evaporative cooling, but will lessen the amount of energy expend on body temperature reduction in hot environments.


Assuntos
Regulação da Temperatura Corporal , Tentilhões , Animais , Feminino , Meio Ambiente , Tentilhões/fisiologia , Temperatura
6.
Glob Chang Biol ; 23(2): 657-672, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27497050

RESUMO

As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting distributions of species under climate change scenarios. The effects of reduced seawater pH on the thermal windows of fertilization, embryology and larval morphology were examined using five echinoderm species: two polar (Sterechinus neumayeri and Odontaster validus), two temperate (Fellaster zelandiae and Patiriella regularis) and one tropical (Arachnoides placenta). Responses were examined across 12-13 temperatures ranging from -1.1 °C to 5.7 °C (S. neumayeri), -0.5 °C to 10.7 °C (O. validus), 5.8 °C to 27 °C (F. zelandiae), 6.0 °C to 27.1 °C (P. regularis) and 13.9 °C to 34.8 °C (A. placenta) under present-day and near-future (2100+) ocean acidification conditions (-0.3 pH units) and for three important early developmental stages 1) fertilization, 2) embryo (prehatching) and 3) larval development. Thermal windows for fertilization were broad and were not influenced by a pH decrease. Embryological development was less thermotolerant. For O. validus, P. regularis and A. placenta, low pH reduced normal development, albeit with no effect on thermal windows. Larval development in all five species was affected by both temperature and pH; however, thermal tolerance was not reduced by pH. Results of this study suggest that in terms of fertilization and development, temperature will remain as the most important factor influencing species' latitudinal distributions as the ocean continues to warm and decrease in pH, and that there is little evidence of a synergistic effect of temperature and ocean acidification on the thermal control of species ranges.


Assuntos
Mudança Climática , Ouriços-do-Mar/fisiologia , Água do Mar/química , Animais , Regiões Antárticas , Concentração de Íons de Hidrogênio , Oceanos e Mares
7.
Artigo em Inglês | MEDLINE | ID: mdl-27215345

RESUMO

Rising water temperature associated with climate change is increasingly recognized as a potential stressor for aquatic organisms, particularly for tropical ectotherms that are predicted to have narrow thermal windows relative to temperate ectotherms. We used intermittent flow resting and swimming respirometry to test for effects of temperature increase on aerobic capacity and swim performance in the widespread African cichlid Pseudocrenilabrus multicolor victoriae, acclimated for a week to a range of temperatures (2°C increments) between 24 and 34°C. Standard metabolic rate (SMR) increased between 24 and 32°C, but fell sharply at 34°C, suggesting either an acclimatory reorganization of metabolism or metabolic rate depression. Maximum metabolic rate (MMR) was elevated at 28 and 30°C relative to 24°C. Aerobic scope (AS) increased between 24 and 28°C, then declined to a level comparable to 24°C, but increased dramatically 34°C, the latter driven by the drop in SMR in the warmest treatment. Critical swim speed (Ucrit) was highest at intermediate temperature treatments, and was positively related to AS between 24 and 32°C; however, at 34°C, the increase in AS did not correspond to an increase in Ucrit, suggesting a performance cost at the highest temperature.


Assuntos
Peixes/fisiologia , Consumo de Oxigênio/fisiologia , Natação/fisiologia , Temperatura , Aclimatação/fisiologia , Algoritmos , Animais , Metabolismo Basal/fisiologia , Temperatura Alta , Masculino , Clima Tropical
8.
J Therm Biol ; 61: 98-105, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27712667

RESUMO

Pinnipeds spend extended periods of time on shore during breeding, and some temperate species retreat to the water if exposed to high ambient temperatures. However, female northern elephant seals (Mirounga angustirostris) with pups generally avoid the water, presumably to minimize risks to pups or male harassment. Little is known about how ambient temperature affects thermoregulation of well insulated females while on shore. We used a thermographic camera to measure surface temperature (Ts) of 100 adult female elephant seals and their pups during the breeding season at Point Reyes National Seashore, yielding 782 thermograms. Environmental variables were measured by an onsite weather station. Environmental variables, especially solar radiation and ambient temperature, were the main determinants of mean and maximum Ts of both females and pups. An average of 16% of the visible surface of both females and pups was used as thermal windows to facilitate heat loss and, for pups, this area increased with solar radiation. Thermal window area of females increased with mean Ts until approximately 26°C and then declined. The Ts of both age classes were warmer than ambient temperature and had a large thermal gradient with the environment (female mean 11.2±0.2°C; pup mean 14.2±0.2°C). This large gradient suggests that circulatory adjustments to bypass blubber layers were sufficient to allow seals to dissipate heat under most environmental conditions. We observed the previously undescribed behavior of females and pups in the water and determined that solar radiation affected this behavior. This may have been possible due to the calm waters at the study site, which reduced the risk of neonates drowning. These results may predict important breeding habitat features for elephant seals as solar radiation and ambient temperatures change in response to changing climate.


Assuntos
Regulação da Temperatura Corporal , Focas Verdadeiras/fisiologia , Animais , Animais Recém-Nascidos , Temperatura Corporal , Cruzamento , Feminino , Focas Verdadeiras/crescimento & desenvolvimento , Luz Solar , Temperatura , Termografia
9.
J Therm Biol ; 53: 151-61, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26590468

RESUMO

On the Yucatan Peninsula there is an upwelling which allows access to a body of cold water that controls temperature in this area. This modulates the ecology and distribution of organisms that inhabit the continental shelf. The objective of this study was to determine the effect of different acclimation temperatures on the thermal biology of prey as mollusc, crustacean (Melongena corona bispinosa, Strombus pugilis, Callinectes similis, Libinia dubia) and predators as fish (Ocyurus chrysurus, Centropomus undecimalis) of Octopus maya. Octopus prey preferred temperatures between 23.5°C and 26.0°C, while predators preferred temperatures 26.4-28.5°C. The species with largest thermal windows were M. corona bispinosa (328.8°C(2)), C. similis (322.8°C(2)), L. dubia (319.2°C(2)), C. undecimalis (288.6°C(2)), O. chrysurus (237.5°C(2)), while the smallest thermal window was for S. pugilis (202.0°C(2)). The acclimation response ratios (ARR) estimated for prey ranged from 0.24-0.55 in animals exposed to CTMax and 0.21-0.65 in those exposed to CTMin. Amongst predators, ARR ranged from 0.30 to 0.60 and 0.41 to 0.53 for animals exposed to CTMax and CTMin, respectively. Correlating the optimal temperature limits of prey and predators with surface temperatures on the continental shelf and those 4m deep showed that the main prey, Callinectes similis and L. dubia, shared a thermal niche and that an increase in temperature could force these species to migrate to other sites to find optimal temperatures for their physiological functions. As a consequence the continental shelf community would undergo a structural change. Predators were found to be near their optimal temperatures in surface temperatures on the continental shelf. We conclude that they would remain in the area in a warming scenario. The size of the thermal window was related to the type of ecosystem inhabited by these species. These ARR intervals allowed us to categorize the species as temperate or tropical, according to the oceanographic conditions that prevail on the Yucatan Peninsula.


Assuntos
Aclimatação , Temperatura Baixa , Peixes/fisiologia , Moluscos/fisiologia , Comportamento Predatório , Animais
10.
Proc Biol Sci ; 280(1767): 20131436, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-23884093

RESUMO

Across taxa, the early rearing environment contributes to adult morphological and physiological variation. For example, in birds, environmental temperature plays a key role in shaping bill size and clinal trends across latitudinal/thermal gradients. Such patterns support the role of the bill as a thermal window and in thermal balance. It remains unknown whether bill size and thermal function are reversibly plastic. We raised Japanese quail in warm (30°C) or cold (15°C) environments and then at a common intermediate temperature. We predicted that birds raised in cold temperatures would develop smaller bills than warm-reared individuals, and that regulation of blood flow to the bill in response to changing temperatures would parallel the bill's role in thermal balance. Cold-reared birds developed shorter bills, although bill size exhibited 'catch-up' growth once adults were placed at a common temperature. Despite having lived in a common thermal environment as adults, individuals that were initially reared in the warmth had higher bill surface temperatures than cold-reared individuals, particularly under cold conditions. This suggests that blood vessel density and/or the control over blood flow in the bill retained a memory of early thermal ontogeny. We conclude that post-hatch temperature reversibly affects adult bill morphology but irreversibly influences the thermal physiological role of bills and may play an underappreciated role in avian energetics.


Assuntos
Bico/anatomia & histologia , Bico/fisiologia , Regulação da Temperatura Corporal , Coturnix/anatomia & histologia , Coturnix/fisiologia , Animais , Bico/crescimento & desenvolvimento , Coturnix/crescimento & desenvolvimento , Feminino , Masculino , Tarso Animal/anatomia & histologia , Tarso Animal/crescimento & desenvolvimento , Temperatura
11.
Animals (Basel) ; 13(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766390

RESUMO

Dairy cattle are typically disbudded or dehorned. Little is known, however, about the biological function and role of horns during thermoregulatory processes in cattle, and thus about the potential physiological consequences of horn removal. Anecdotal evidence suggests that dairy cow horns increase in temperature during rumination, and few studies on other bovid species indicate that horns aid thermoregulation. The objective of this study was, therefore, to elucidate a possible thermoregulatory function of the horns in dairy cattle. Using non-invasive infrared thermography, we measured the superficial temperature of the horns, eyes, and ears of 18 focal cows on three different farms in a temperate climate zone under various environmental circumstances. Observations of social and non-social behaviours were conducted as well. Based on environmental temperature, humidity, and wind speed, the heat load index (HLI) was calculated as a measure of the heat load experienced by a cow. The temperature of the horns increased by 0.18 °C per unit HLI, indicating that horns serve the dissipation of heat. Dehorned cows had higher eye temperatures than horned cows, though this result should be interpreted with caution as the low sample size and experimental setup prevent casual conclusions. We did not, however, find changes in horn temperature during rumination, nor with any other behaviours. Our study thus supports a role of horns in thermoregulation, but not related to rumination. These results should be considered when assessing the potential consequences of horn removal, a painful procedure.

12.
Animals (Basel) ; 12(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552478

RESUMO

Promoting animal welfare in wildlife species under human care requires the implementation of techniques for continuously monitoring their health. Infrared thermography is a non-invasive tool that uses the radiation emitted from the skin of animals to assess their thermal state. However, there are no established thermal windows in wildlife species because factors such as the thickness or color of the skin, type/length of coat, or presence of fur can influence the readings taken to obtain objective, sensitive values. Therefore, this review aims to discuss the usefulness and application of the ocular, nasal, thoracic, abdominal, and podal anatomical regions as thermal windows for evaluating zoo animals' thermal response and health status. A literature search of the Web of Science, Science Direct, and PubMed databases was performed to identify relevant studies that used IRT with wild species as a complementary diagnostic tool. Implementing IRT in zoos or conservation centers could also serve as a method for determining and monitoring optimal habitat designs to meet the needs of specific animals. In addition, we analyze the limitations of using IRT with various wildlife species under human care to understand better the differences among animals and the factors that must be considered when using infrared thermography.

13.
Animals (Basel) ; 12(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35327185

RESUMO

Infrared thermography (IRT) has been proposed as a method for clinical research to detect local inflammatory processes, wounds, neoplasms, pain, and neuropathies. However, evidence of the effectiveness of the thermal windows used in dogs and cats is discrepant. This review aims to analyze and discuss the usefulness of IRT in diverse body regions in household animals (pets) related to recent scientific evidence on the use of the facial, body, and appendicular thermal windows. IRT is a diagnostic method that evaluates thermal and circulatory changes under different clinical conditions. For the face, structures such as the lacrimal caruncle, ocular area, and pinna are sensitive to assessments of stress degrees, but only the ocular window has been validated in felines. The usefulness of body and appendicular thermal windows has not been conclusively demonstrated because evidence indicates that biological and environmental factors may strongly influence thermal responses in those body regions. The above has led to proposals to evaluate specific muscles that receive high circulation, such as the bicepsfemoris and gracilis. The neck area, perivulvar, and perianal regions may also prove to be useful thermal windows, but their degree of statistical reliability must be established. In conclusion, IRT is a non-invasive technique that can be used to diagnose inflammatory and neoplastic conditions early. However, additional research is required to establish the sensitivity and specificity of these thermal windows and validate their clinical use in dogs and cats.

14.
Animals (Basel) ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34438705

RESUMO

Infrared thermography (IRT) is a non-ionizing, non-invasive technique that permits evaluating the comfort levels of animals, a topic of concern due to the growing interest in determining the state of health and welfare of production animals. The operating principle of IRT is detecting the heat irradiated in anatomical regions characterized by a high density of near-surface blood vessels that can regulate temperature gain or loss from/to the environment by modifying blood flow. This is essential for understanding the various vascular thermoregulation mechanisms of different species, such as rodents and ruminants' tails. The usefulness of ocular, nasal, and vulvar thermal windows in the orbital (regio orbitalis), nasal (regio nasalis), and urogenital (regio urogenitalis) regions, respectively, has been demonstrated in cattle. However, recent evidence for the river buffalo has detected discrepancies in the data gathered from distinct thermal regions in these large ruminants, suggesting a limited sensitivity and specificity when used with this species due to various factors: the presence of hair, ambient temperature, and anatomical features, such as skin thickness and variations in blood supplies to different regions. In this review, a literature search was conducted in Scopus, Web of Science, ScienceDirect, and PubMed, using keyword combinations that included "infrared thermography", "water buffalo", "river buffalo" "thermoregulation", "microvascular changes", "lacrimal caruncle", "udder", "mastitis", and "nostril". We discuss recent findings on four thermal windows-the orbital and nasal regions, mammary gland in the udder region (regio uberis), and vulvar in the urogenital region (regio urogenitalis)-to elucidate the factors that modulate and intervene in validating thermal windows and interpreting the information they provide, as it relates to the clinical usefulness of IRT for cattle (Bos) and the river buffalo (Bubalus bubalis).

15.
J Comp Physiol B ; 190(3): 297-315, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32144506

RESUMO

Environmental stress induced by natural and anthropogenic processes including climate change may threaten the productivity of species and persistence of populations. Ectotherms can potentially cope with stressful conditions such as extremes in temperature by exhibiting physiological plasticity. Amphibian larvae experiencing stressful environments display altered thyroid hormone (TH) status with potential implications for physiological traits and acclimation capacity. We investigated how developmental temperature (Tdev) and altered TH levels (simulating proximate effects of environmental stress) influence the standard metabolic rate (SMR), body condition (BC), and thermal tolerance in metamorphic and post-metamorphic anuran larvae of the common frog (Rana temporaria) reared at five constant temperatures (14-28 °C). At metamorphosis, larvae that developed at higher temperatures had higher maximum thermal limits but narrower ranges in thermal tolerance. Mean CTmax was 37.63 °C ± 0.14 (low TH), 36.49 °C ± 0.31 (control), and 36.43 °C ± 0.68 (high TH) in larvae acclimated to different temperatures. Larvae were able to acclimate to higher Tdev by adjusting their thermal tolerance, but not their SMR, and this effect was not impaired by altered TH levels. BC was reduced by 80% (metamorphic) and by 85% (post-metamorphic) at highest Tdev. The effect of stressful larval conditions (i.e., different developmental temperatures and, to some extent, altered TH levels) on SMR and particularly on BC at the onset of metamorphosis was carried over to froglets at the end of metamorphic climax. This has far reaching consequences, since body condition at metamorphosis is known to determine metamorphic success and, thus, is indirectly linked to individual fitness in later life stages.


Assuntos
Rana temporaria/crescimento & desenvolvimento , Rana temporaria/metabolismo , Temperatura , Hormônios Tireóideos/metabolismo , Aclimatação , Animais , Metabolismo Basal , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica , Estresse Fisiológico
16.
Conserv Physiol ; 3(1): cov039, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27293724

RESUMO

Coral reefs within 10° of the equator generally experience ≤3°C seasonal variation in water temperature. Ectotherms that have evolved in these conditions are therefore expected to exhibit narrow thermal optima and be very sensitive to the greater thermal variability (>6°C) experienced at higher latitudes (≥10°N/S). The impact of increased thermal variability on the fitness and distribution of thermally sensitive reef ectotherms is currently unknown. Here, we examine site-attached planktivorous coral reef damselfishes that rely on their physiological capacity to swim and forage in the water column year round. We focus on 10 species spanning four evolutionarily distinct genera from a region of the Great Barrier Reef that experiences ≥6°C difference between seasons. Four ecologically important indicators showed reduced performance during the winter low (23°C) compared with the summer peak (29°C), with effect sizes varying among species and genera, as follows: (i) the energy available for activity (aerobic scope) was reduced by 35-45% in five species and three genera; (ii) the energetically most efficient swimming speed was reduced by 17% across all species; and (iii) the maximal critical swimming speed and (iv) the gait transition speed (the swimming mode predominantly used for foraging) were reduced by 16-42% in six species spanning all four genera. Comparisons with field surveys within and across latitudes showed that species-specific distributions were strongly correlated with these performance indicators. Species occupy habitats where they can swim faster than prevailing habitat currents year round, and >95% of individuals were observed only in habitats where the gait transition speed can be maintained at or above habitat currents. Thermal fluctuation at higher latitudes appears to reduce performance as well as the possible distribution of species and genera within and among coral reef habitats. Ultimately, thermal variability across latitudes may progressively cause sublethal changes to species performance and lead to a contraction of biogeographical range.

17.
ACS Appl Mater Interfaces ; 7(29): 15898-908, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26095083

RESUMO

The applications of strontium titanium oxide based thermoelectric materials are currently limited by their high operating temperatures of >700 °C. Herein, we show that the thermal operating window of lanthanum strontium titanium oxide (LSTO) can be reduced to room temperature by the addition of a small amount of graphene. This increase in operating performance will enable future applications such as generators in vehicles and other sectors. The LSTO composites incorporated one percent or less of graphene and were sintered under an argon/hydrogen atmosphere. The resultant materials were reduced and possessed a multiphase structure with nanosized grains. The thermal conductivity of the nanocomposites decreased upon the addition of graphene, whereas the electrical conductivity and power factor both increased significantly. These factors, together with a moderate Seebeck coefficient, meant that a high power factor of ∼2500 µWm(-1)K(-2) was reached at room temperature at a loading of 0.6 wt % graphene. The highest thermoelectric figure of merit (ZT) was achieved when 0.6 wt % graphene was added (ZT = 0.42 at room temperature and 0.36 at 750 °C), with >280% enhancement compared to that of pure LSTO. A preliminary 7-couple device was produced using bismuth strontium cobalt oxide/graphene-LSTO pucks. This device had a Seebeck coefficient of ∼1500 µV/K and an open voltage of 600 mV at a mean temperature of 219 °C.

18.
Ecol Evol ; 4(15): 3103-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25247067

RESUMO

UNLABELLED: In exothermal organisms, temperature is an important determinant of the rate of ecophysiological processes, which monotonically increase between the minimum (t d min) and maximum (t d max) temperatures typical for each species. In insects, t d min and t d max are correlated and there is a approximately 20°C interval (thermal window W T = t d max - t d min) between them over which insects can develop. We assumed that other exotherms have similar thermal windows because the thermal kinetics of their physiological processes are similar. In this study, we determined the thermal requirements for germination in plants. Seeds of 125 species of Central European wild herbaceous and crop plants were germinated at nine constant temperatures between 5 and 37°C, and the time to germination of 50% of the seeds D and rate of germination R (=1/D) were determined for each temperature and the Lactin model used to determine t d min, t d max, and W T. The average width of the thermal windows for seeds was significantly wider (mean 24°C, 95% CI 22.7-24.2°C), varied more (between 14.5 and 37.5°C) and development occurred at lower temperatures than recorded for insects. The limiting temperatures for germination, t d min and t d max, were not coupled, so the width of the thermal window increased with both a decrease in t d min and/or increase in t d max. Variation in W T was not associated with taxonomic affiliation, adult longevity, or domestication of the different species, but tends to vary with seed size. Plants are poor at regulating their temperature and cannot move to a more suitable location and as a consequence have to cope with wider ranges in temperatures than insects and possibly do this by having wider thermal windows. SYNTHESIS: The study indicated specificity of W T in different exotherm taxa and/or their development stages.

19.
Front Evol Neurosci ; 3: 3, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21960970

RESUMO

Recent evidence suggests that yawning is a thermoregulatory behavior. To explore this possibility further, the frequency of contagious yawning in humans was measured while outdoors in a desert climate in the United States during two distinct temperature ranges and seasons (winter: 22°C; early summer: 37°C). As predicted, the proportion of pedestrians who yawned in response to seeing pictures of people yawning differed significantly between the two conditions (winter: 45%; summer: 24%). Across conditions yawning occurred at lower ambient temperatures, and the tendency to yawn during each season was associated with the length of time spent outside prior to being tested. Participants were more likely to yawn in the milder climate after spending long periods of time outside, while prolonged exposure to ambient temperatures at or above body temperature was associated with reduced yawning. This is the first report to show that the incidence of yawning in humans is associated with seasonal climate variation, further demonstrating that yawn-induced contagion effects can be mediated by factors unrelated to individual social characteristics or cognitive development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa