Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
1.
Small ; 20(32): e2312098, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38461523

RESUMO

Double-borylated multiple-resonance (MR) skeletons are promising templates for high performance, while the chemical design space is relatively limited. Peripheral segments are often used to decorate/fuse MR skeletons and modulate the photophysics but they can also cause unwanted spectral broadening. Herein, a narrowband MR emitter ICzDBA by fusing an MR-featured donor segment indolocarbazole into a double-borylated MR skeleton is developed. In ICzDBA, the nitrogen atom located away from the core benzene ring can also contribute to the generation of the overall MR-featured distribution through the long-range conjugation effect, along with the other boron/nitrogen atoms on the phenyl center. Thus, ICzDBA in toluene displays a narrowband emission peaking at 507 nm with a full width at half maximum of merely 20 nm (0.09 eV). Moreover, organic light-emitting diode devices using ICzDBA emitter exhibit ultrapure green emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.27, 0.70) and a high external quantum efficiency of 32.5%. These results manifest the importance of MR characters of peripheral decorations/fusions in preserving the narrowband features of MR skeletons, which provides a solution for further expanding MR structures with well-maintained narrowband characters.

2.
Small ; 20(8): e2305589, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828633

RESUMO

In consideration of energy economization and light quality, concurrently attaining high external quantum efficiency (ηext ) and high color rendering index (CRI) is of high significance for the commercialization of hybrid white organic light-emitting diodes (WOLEDs) but is challenging. Herein, a blue luminescent molecule (2PCz-XT) consisting of a xanthone acceptor and two 3,6-diphenylcarbazole donors is prepared, which exhibits strong delayed fluorescence, short delayed fluorescence lifetime, and excellent electroluminescence property, and can sensitize green, orange, and red phosphorescent emitters efficiently. By employing 2PCz-XT as sensitizer and phosphorescent emitters as dopants, efficient two-color and three-color WOLED architectures with ultra-thin phosphorescent emitting layers (EMLs) are proposed and constructed. By incorporating a thin interlayer to modulate exciton recombination zone and reduce exciton loss, high-performance three-color hybrid WOLEDs are finally achieved, providing a high ηext of 26.8% and a high CRI value 83 simultaneously. Further configuration optimization realizes a long device operational lifetime. These WOLEDs with ultra-thin phosphorescent EMLs are among the state-of-the-art hybrid WOLEDs in the literature, demonstrating the success and applicability of the proposed device design for developing robust hybrid WOLEDs with superb efficiency and color quality.

3.
Small ; 20(7): e2306800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37823676

RESUMO

Thermally activated delayed fluorescence (TADF) materials have been widely studied for the fabrication of high-performance organic light-emitting diodes (OLEDs), but the serious efficiency roll-offs still remain unsolved in most cases. Herein, it is wish to report a series of robust green TADF compounds containing rigid xanthenone acceptor and acridine-based spiro donors. The enhancement in molecular rigidity not only endows the compounds with improved thermal stability but also results in reduced geometric vibrations and thus lowered reorganization energies. These compounds exhibit distinct merits of high thermal stabilities, excellent photoluminescence quantum efficiencies (96%-97%), large horizontal dipole orientation ratios (87.4%-92.1%) and fast TADF rates (1.4-1.5 × 106 s-1 ). The OLEDs using them as emitters furnish superb electroluminescence performances with outstanding external quantum efficiencies (ηext s) of up to 37.4% and very small efficiency roll-offs. Moreover, highly efficient hyperfluorescence OLEDs are obtained by using them as sensitizers for the green mutilresonance TADF emitter BN2, delivering excellent ηext s of up to 34.2% and improved color purity. These results disclose the high potential of these TADF compounds as emitters and sensitizers for OLEDs.

4.
Chemistry ; 30(35): e202401246, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38630894

RESUMO

A thorough understanding of the internal conversion process between excited states is important for the designing of ideal multiple-emissive materials. However, it is hard to experimentally measure both the energy barriers and gaps between the excited states of a compound. For a long time, it is dubious if what was measured is the energy gap or barrier between two excited states. In this paper, we designed 1-(pyren-2'-yl)-9,12-di(p-tolyl)-o-carborane (2), which shows dual-emission in solution. Temperature-dependent fluorescence measurements show that the two emission bands in hexane are corresponding to two different excited states. The ratio of the emission bands is controlled by thermodynamics at higher temperatures and by kinetics at lower temperatures. Thus, the energy barrier and energy gaps between the two excited states of 2 can be experimentally estimated.

5.
Chemistry ; 30(40): e202401001, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38742479

RESUMO

Photodynamic therapy (PDT) is a rapidly growing discipline that is expected to become an encouraging noninvasive therapeutic strategy for cancer treatment. In the PDT process, an efficient intersystem crossing (ISC) process for photosensitizers from the singlet excited state (S1) to the triplet excited state (T1) is critical for the formation of cytotoxic reactive oxygen species and improvement of PDT performance. Thermally activated delayed fluorescence (TADF) molecules featuring an extremely small singlet-triplet energy gap and an efficient ISC process represent an enormous breakthrough for the PDT process. Consequently, the development of advanced TADF photosensitizers has become increasingly crucial and pressing. The most recent developments in TADF photosensitizers aimed at enhancing PDT efficiency for bio-applications are presented in this review. TADF photosensitizers with water dispersibility, targeting ability, activatable ability, and two-photon excitation properties are highlighted. Furthermore, the future challenges and perspectives of TADF photosensitizers in PDT are proposed.


Assuntos
Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fluorescência , Corantes Fluorescentes/química
6.
Chemistry ; 30(4): e202303169, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37965803

RESUMO

In general, a large donor-acceptor dihedral angle is required to guarantee sufficient frontier molecular orbitals separation for thermally activated delayed fluorescence (TADF) emitters, which is intrinsically unfavorable for the radiative transition. We present a molecular design method favoring both reverse intersystem crossing (RISC) and radiative transitions even at a moderate D-A angle. A blue TADF emitter TrzBuCz-CN was designed with triazine/tert-butylcarbazole as donor/acceptor and cyano (CN) incorporated on the phenylene bridge. In comparison with the methyl decoration in similar way (TrzBuCz-Me), CN decoration reduced the D-A dihedral angle from 70° to 60°, which is intrinsically not favorable for sufficient FMO separation, but unexpectedly reduced the singlet and triplet energy gap (ΔEST ) and thus facilitated TADF feature by pulling down the lowest singlet state energy. While the reduced distorsion instead improved the HOMO-LUMO overlap and boosted the fluorescence quantum yield from 41 % to 94 %. The blue organic light-emitting diode of TrzBuCz-CN exhibited an external quantum efficiency of 13.7 % with emission peak at 466 nm, greatly superior to 6.0 % of TrzBuCz-Me. The result provides a feasible design strategy to facilitate both RISC and radiation processes by CN decoration of the linking bridge of TADF emitters.

7.
Chemistry ; 30(4): e202302861, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015005

RESUMO

Organic small molecules with high photothermal conversion efficiencies that absorb near-infrared light are desirable for photothermal therapy due to their improved biocompatibility compared to inorganic materials and their ability to absorb light in the biological transparency window (650-1350 nm). Here we report three donor-acceptor organic materials DM-ANDI, O-ANDI, and S-ANDI that show high photothermal conversion efficiencies of 46-68 % with near-infrared absorption. The design of these molecules is based on the rational modification of a thermally activated delayed fluorescence material to favour a low photoluminescence quantum yield by reducing HOMO-LUMO overlap. Encapsulating these materials into either neat nanoparticles or aggregated organic dots modulates their photothermal conversion efficiencies, and also facilitates dispersion in water.

8.
Chemistry ; 30(21): e202304095, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38246880

RESUMO

Thermally activated delayed fluorescence (TADF) polymers show a great potential in low-cost, large-area and flexible full-color flat-panel displays. One of the most promising design rules is based on TADF+Linker, where a small molecular TADF unit is bonded to each other by a simple linker. Unlike the expensive vacuum deposition for small molecules, these polymerized TADF small molecules (Poly-TADF-SMs) are capable of cost-effective solution processing. Meanwhile, the good luminescent property of small molecular TADF emitters can be well inherited by Poly-TADF-SMs so as to bridge the efficiency gap between small molecules and polymers. Herein, we will highlight the recent progress of Poly-TADF-SMs, together with emphasis on their molecular design, photophysical and electroluminescence properties.

9.
Chemistry ; 30(18): e202303834, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267399

RESUMO

Blue afterglow constitutes of one of the primary afterglow colors and can convert into other afterglow colors through energy transfer. The reported studies show the fabrication of blue afterglow emitters, but most of them are formed by room-temperature phosphorescence mechanism and require UVB lights as excitation source (these high-energy lights may damage organic systems). Here we report visible-light-excitable blue thermally activated delayed fluorescence type (TADF-type) afterglow materials via delicate control of excited states in difluoroboron ß-diketonate (BF2bdk) systems. Tiny change of the substituents in BF2bdk system has been found to pose significant influence on excited state energy levels and consequently narrow the singlet-triplet splitting energy of the system. As a result, both forward and reverse intersystem crossing have been accelerated, leading to the emergence of BF2bdk's TADF-type organic afterglow in rigid crystalline matrices. The resultant TADF-type afterglow materials exhibit emission lifetimes of several hundred milliseconds, photoluminescence quantum yield (PLQY) of 24.7 % and display temperature responsive property.

10.
Chemistry ; 30(14): e202303990, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060300

RESUMO

Red luminescent materials are essential components for full color display and white lightening based on organic light-emitting diode (OLED) technology, but the extension of emission color towards red or deep red region generally leads to decreased photoluminescence and electroluminescence efficiencies. Herein, we wish to report two new luminescent molecules (2CNDPBPPr-TPA and 4CNDPBPPr-TPA) consisting of cyano-substituted 11,12-diphenyldipyrido[3,2-a:2',3'-c]phenazine acceptors and triphenylamine donors. As the increase of cyano substituents, the emission wavelength is greatly red-shifted and the reverse intersystem crossing process is promoted, resulting in strong red delayed fluorescence. Meanwhile, due to the formation of intramolecular hydrogen bonds, the molecular structures become rigidified and planarized, which brings about large horizontal dipole ratios. As a result, 2CNDPBPPr-TPA and 4CNDPBPPr-TPA can perform as emitters efficiently in OLEDs, furnishing excellent external quantum efficiencies of 28.8 % at 616 nm and 20.2 % at 648 nm, which are significantly improved in comparison with that of the control molecule without cyano substituents. The findings in this work demonstrate that the introduction of cyano substituents to the acceptors of delayed fluorescence molecules could be a facile and effective approach to explore high-efficiency red or deep red delayed fluorescence materials.

11.
Chemistry ; 30(32): e202400868, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38576402

RESUMO

Polymorphism-dependent cytotoxicity and cellular uptake of drug molecules have been studied for the past two decades. However, the visualization of polymorph-dependent cellular uptake and cytotoxicity using microscopy imaging techniques has not yet been reported. The luminescent polymorph is an ideal candidate to validate the above hypothesis. Herein, we report the polymorph-dependent cellular uptake, cytotoxicity, and bio-imaging functions of polymorphs 1Y and 1R of a naphthalimide-phenothiazine dyad. These polymorphs show different luminescence colors in the solid state and exhibit aggregation-induced enhanced emission (AIEE) in the DMSO-Water mixture. Bioimaging, cytotoxicity assay, and fluorescence-activated cell sorting (FACS) studies revealed that these polymorphs show different levels of cytotoxicity, cellular uptake, localization, and imaging potential. Detailed photophysical, morphological, and biological studies revealed that the difference in molecular conformation in these polymorphs enables them to form aggregates of different sizes and morphology, which leads to the differential uptake of these into the cells and consequently shows different cytotoxicity and imaging potentials.


Assuntos
Naftalimidas , Fenotiazinas , Fenotiazinas/química , Humanos , Naftalimidas/química , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo
12.
Chemistry ; : e202402294, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101875

RESUMO

In this work, we synthesize a series of push-pull compounds bearing naphthalimide as the electron acceptor and tetraphenylethylene (TPE)/triphenylamine (TPA)/phenothiazine (PTZ) as the electron rich/electron donor units. These moieties are arranged in highly conjugated quadrupolar structures. The structure-property relationships are investigated through a joint experimental time-resolved spectroscopic and computational TD-DFT study. The femtosecond transient absorption and fluorescence up-conversion experiments reveal ultrafast photoinduced intramolecular charge transfer. This is likely the key factor leading to efficient spin-orbit CT-induced intersystem crossing for the TPA- and PTZ-derivatives as well as to small singlet-to-triplet energy gap. Consequently, evidence for a delayed fluorescence component is found together with the main prompt emission in the fluorescence kinetics both in solution and in thin film. The weight of the Thermally Activated Delayed Fluorescence (TADF) is greatly enhanced when these fluorophores are used as guests in solid-state host matrices. TADF is interestingly revealed in the orange-red region of the visible. Such long wavelength emission is here observed with surprisingly large fluorescence quantum yields, thanks to the conjugation enhancement achieved in these newly synthesized structures relative to previous studies. Our findings may be thus promising for the future development of efficient third generation TADF-based OLEDs.

13.
Chemistry ; 30(37): e202401250, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38705864

RESUMO

9,9-Dimethyl-9,10-dihydroacridine (DMAC) is one of the most widely used electron donor for constructing high-performance thermally activated delayed fluorescence (TADF) emitters. However, DMAC-based emitters often suffer from the imperfect color purity, particularly in blue emitters, due to its strong electron-donating capability. To modulate donor strength, 2,7-F-Ph-DMAC and 2,7-CF3-Ph-DMAC were designed by introducing the electron-withdrawing 2-fluorophenyl and 2-(trifluoromethyl)phenyl at the 2,7-positions of DMAC. These donors were used, in combination with 2,4,6-triphenyl-1,3,5-triazine (TRZ) acceptor, to develop novel TADF emitters 2,7-F-Ph-DMAC-TRZ and 2,7-CF3-Ph-DMAC-TRZ. Compared to the F- or CF3-free reference emitter, both two emitters showed hypsochromic effect in fluorescence and comparable photoluminescence quantum yields without sacrificing the reverse intersystem crossing rate constants. In particular, 2,7-CF3-Ph-DMAC-TRZ based OLED exhibited a blue shift by up to 39 nm and significantly improved Commission International de l'Éclairage (CIE) coordinates from (0.36, 0.55) to (0.22, 0.41), while the external quantum efficiency kept stable at about 22.5 %. This donor engineering strategy should be valid for improving the color purity of large amount of acridine based TADF emitters. It can be predicted that pure blue TADF emitters should be feasible if these F- or CF3-modifed acridine donors are combined with other weaker electron acceptors.

14.
Chemistry ; 30(36): e202400817, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38654445

RESUMO

Luminescent organometallic complexes of earth-abundant copper(I) have long been studied in organic light-emitting diodes (OLED). Particularly, Cu(I)-based carbene-metal-amide (CMA) complexes have recently emerged as promising organometallic emitters. However, blue-emitting Cu(I) CMA complexes have been rarely reported. Here we constructed two blue-emitting Cu(I) CMA emitters, MAC*-Cu-CF3Cz and MAC*-Cu-2CF3Cz, by introducing one or two CF3 substitutes into carbazole ligands. Both complexes exhibited high thermal stability and blue emission colors. Moreover, two complexes exhibited different emission origins rooting from different donor ligands: a distinct thermally activated delayed fluorescence (TADF) from ligand-to-ligand charge transfer excited states for MAC*-Cu-CF3Cz or a dominant phosphorescence nature from local triplet excited state of the carbazole ligand for MAC*-Cu-2CF3Cz. Inspiringly, MAC*-Cu-CF3Cz had high photoluminescence quantum yields of up to 94 % and short emission lifetimes of down to 1.2 µs in doped films, accompanied by relatively high radiative rates in the 105 s-1 order. The resultant vacuum-deposited OLEDs based on MAC*-Cu-CF3Cz delivered pure-blue electroluminescence at 462 nm together with a high external quantum efficiency of 13.0 %.

15.
Chemistry ; : e202401682, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934566

RESUMO

Organic light-emitting diodes (OLEDs) are promising lighting solutions for sustainability and energy efficiency. Incorporating thermally activated delayed fluorescence (TADF) molecules enables OLEDs to achieve internal quantum efficiency (IQE), in principle, up to 100%; therefore, new classes of promising TADF emitters and modifications of existing ones are sought after. This study explores the TADF emission properties of six designed TADF emitters, examining their photophysical responses using experimental and theoretical methods. The design strategy involves creating six distinct types of a donor-acceptor (D-A) system, where tert-butylcarbazoles are used as donors, while the acceptor component incorporates three different functional groups: nitrile, tetrazole and oxadiazole, with varying electron-withdrawing character. Additionally, the donor-acceptor distance is adjusted using a phenylene spacer, and its influence on TADF functionality is examined. The clear dependency of an additional spacer, inhibiting TADF, could be revealed. Emitters with a direct donor-acceptor connection are demonstrated to exhibit TADF moderate emissive behavior. The analysis emphasizes the impact of charge transfer, singlet-triplet energy gaps (ΔEST), and other microscopic parameters on photophysical rates, permitting TADF. Among the emitters, TCz-CN shows optimal performance as a blue-green emitter with an 88% photoluminescence quantum yield (PLQY) and fast rate of reversible intersystem crossing of 2x106 s-1.

16.
J Fluoresc ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141276

RESUMO

Afterglow materials possess the remarkable capability to harness the energy and subsequently emit light after irradiation is turned off. Owing to their extraordinary ultralong lifetime, afterglow materials have garnered significant interest across various domains such as sensing, optoelectronics, bioimaging, and information encryption. However, these materials typically exhibit temperature sensitivity, rendering their afterglow emission susceptible to efficient quenching at room temperature. Consequently, this study presents herein a straightforward, simple, and universal approach for synthesizing metal-free carbon dots (CDs) endowed with thermally activated delayed fluorescence (TADF) characteristics at room temperature. In this study, TADF-CDs were simply synthesized by pyrolyzing boronic acid (BA) and urea at 500 ℃ for 3 h. Benefiting from the multi-confined effects facilitated by the robust structure of BA matrix, in conjunction with the co-doped heteroatoms of nitrogen and boron, the resultant TADF-CDs manifest remarkably prolonged afterglow TADF emission, characterized by a calculated lifetime of 184.64 ms; moreover, the blue afterglow emission remains perceptible to the naked eye for more than 6 s. The attributes of TADF-CDs were comprehensively elucidated through rigorous characterization, and the universality of the approach was corroborated through experimentation involving fourteen control CDs. Leveraging their distinctive TADF attributes, the prepared TADF-CDs were subsequently employed in advanced applications such as anti-counterfeiting and information encryption.

17.
J Fluoresc ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170425

RESUMO

The electronic and optoelectronic properties of molecules constituted by benzene as linker, phenoxaborin as acceptor coupled with different types of donor moieties are investigated using the density functional theoretical method. The energy gap between the first excited singlet and triplet states (ΔEST) of the designed molecules (1-9) is found to be less than 0.5 eV suggesting them as ideal candidates for thermally activated delayed fluorescence (TADF) emitters. The analysis of frontier molecular orbitals of the molecules revealed a minimum spatial overlap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in favor of the small values of ΔEST. Among the molecules studied, the one in which dihydrophenazine acts as the donor has the lowest value of ΔEST. All designed molecules are good electron transporters. The non-linear optical properties of the molecules are also examined.

18.
Molecules ; 29(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38731637

RESUMO

Inkjet printing technology offers a unique approach to producing direct-patterned pixels without fine metal masks for active matrix displays. Organic light-emitting diodes (OLEDs) consisting of thermally activated delayed fluorescence (TADF) emitters facilitate efficient light emission without heavy metals, such as platinum and iridium. Multi-resonance TADF molecules, characterized by their small full width at half maxima (FWHM), are highly suitable for the requirements of wide color-gamut displays. Herein, host-free TADF inks with a low concentration of 1 mg/mL were developed and inkjet-printed onto a seeding layer, concurrently serving as the hole-transporting layer. Attributed to the proof-of-concept of host-free inks printed on a mixed seeding layer, a maximum external quantum efficiency of 13.1% (improved by a factor of 21.8) was achieved in the inkjet-printed OLED, with a remarkably narrow FWHM of only 32 nm. Highly efficient energy transfer was facilitated by the effective dispersion of the sensitizer around the terminal emitters.

19.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398593

RESUMO

Up to now, highly efficient narrowband thermally activated delayed fluorescence (TADF) molecules constructed by oxygen-bridged boron with an enhancing multiple resonance (MR) effect have been in urgent demand for solid-state lighting and full-color displays. In this work, a novel MR-TADF molecule, BNBO, constructed by the oxygen-bridged boron unit and boron-nitrogen core skeleton as an electron-donating moiety, is successfully designed and synthesized via a facile one-step synthesis. Based on BNBO as an efficient green emitter, the organic light-emitting diode (OLED) shows a sharp emission peak of 508 nm with a full-width at half-maximum (FWHM) of 36 nm and realizes quite high peak efficiency values, including an external quantum efficiency (EQEmax) of 24.3% and a power efficiency (PEmax) of 62.3 lm/W. BNBO possesses the intramolecular charge transfer (ICT) property of donor-acceptor (D-A) materials and multiple resonance characteristics, which provide a simple strategy for narrowband oxygen-boron materials.

20.
Angew Chem Int Ed Engl ; : e202410414, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924578

RESUMO

A series of TADF-active compounds: 0D chiral Ln-Ag(I) clusters L-/D-Ln2Ag28-0D (Ln=Eu/Gd) and 2D chiral Ln-Ag(I) cluster-based frameworks L-/D-Ln2Ag28-2D (Ln=Gd) has been synthesized. Atomic-level structural analysis showed that the chiral Ag(I) cluster units {Ag14S12} in L-/D-Ln2Ag28-0D and L-/D-Ln2Ag28-2D exhibited similar configurations, linked by varying numbers of [Ln(H2O)x]3+ (x=6 for 0D, x=3 for 2D) to form the final target compounds. Temperature-dependent emission spectra and decay lifetimes measurement demonstrated the presence of TADF in L-Ln2Ag28-0D (Ln=Eu/Gd) and L-Gd2Ag28-2D. Experimentally, the remarkable TADF properties primarily originated from {Ag14S12} moieties in these compounds. Notably, {Ag14S12} in L-Eu2Ag28-0D and L-Gd2Ag28-2D displayed higher promote fluorescence rate and shorter TADF decay times than L-Gd2Ag28-0D. Combined with theoretical calculations, it was determined that the TADF behaviors of {Ag14S12} cluster units were induced by 4 f perturbation of Ln3+ ions. Specially, while maintaining ΔE(S1-T1) small enough, it can significantly increase k(S1→S0) and reduce TADF decay time by adjusting the type or number of Ln3+ ions, thus achieving the purpose of improving TADF for cluster-based luminescent materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa