Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(3): 1433-1442, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34747171

RESUMO

Skin-mountable capacitive-type strain sensors with great linearity and low hysteresis provide inspiration for the interactions between human and machine. For practicality, high sensing performance, large stretchability, and self-healing are demanded but limited by stretchable electrode and dielectric and interfacial compatibility. Here, we demonstrate an extremely stretchable and self-healing conductor via both hard and soft tactics that combine conductive nanowire assemblies with double dynamic network based on π-π attractions and Ag-S coordination bonds. The obtained conductor outperforms the reported stretchable conductors by delivering an elongation of 3250%, resistance change of 223% at 2000% strain, high durability, and multiresponsive self-healability. Especially, this conductor accommodates large strain of 1500% at extremely knotted and twisted deformations. By sandwiching hydrogel conductors with a newly developed dielectric, ultrahigh stretchability and omni-healability are simultaneously achieved for the first time for a capacitive strain sensor inspired by metal-thiolate coordination chemistry, showing great potentials in wearable electronics and soft robotics.


Assuntos
Nanofios , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Eletrônica , Humanos , Hidrogéis/química , Nanofios/química
2.
Chembiochem ; 23(16): e202200290, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35714117

RESUMO

The transcriptional regulator CueR is activated by the binding of CuI , AgI , or AuI to two cysteinates in a near-linear fashion. The C-terminal CCHHRAG sequence in Escherichia coli CueR present potential additional metal binding ligands and here we explore the effect of deleting this fragment on the binding of AgI to CueR. CD spectroscopic and ESI-MS data indicate that the high AgI -binding affinity of WT-CueR is significantly reduced in Δ7C-CueR.[111 Ag PAC spectroscopy demonstrates that the WT-CueR metal site structure (AgS2 ) is conserved, but less populated in the truncated variant. Thus, the function of the C-terminal fragment may be to stabilize the two-coordinate metal site for cognate monovalent metal ions. In a broader perspective this is an example of residues beyond the second coordination sphere affecting metal site physicochemical properties while leaving the structure unperturbed.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Transativadores , Sítios de Ligação , Cobre/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ouro/química , Metais/metabolismo , Prata/química , Transativadores/metabolismo
3.
Adv Mater ; 31(19): e1900573, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30920707

RESUMO

In addition to a high specific capacitance, a large stretchability and self-healing properties are also essential to improve the practicality and reliability of supercapacitors in portable and wearable electronics. However, the integration of multiple functions into one device remains challenging. Here, the construction of a highly stretchable and real-time omni-healable supercapacitor is demonstrated by sandwiching the polypyrrole-incorporated gold nanoparticle/carbon nanotube (CNT)/poly(acrylamide) (GCP@PPy) hydrogel electrodes with a CNT-free GCP (GP) hydrogel as the electrolyte and chemically soldering an Ag nanowire film to the hydrogel electrode as the current collector. The newly developed dynamic metal-thiolate (M-SR, M = Au, Ag) bond-induced integrated configuration, with an intrinsically powerful electrode and electrolyte, enables the assembled supercapacitor to deliver an areal capacitance of 885 mF cm-2 and an energy density of 123 µWh cm-2 , which are among the highest-reported values for stretchable supercapacitors. Notably, the device exhibits a superhigh stretching strain of 800%, rapid optical healing capability, and significant real-time healability during the charge-discharge process. The exceptional performance combined with the facile assembly method confirms this multifunctional device as the best performer among all the flexible supercapacitors reported to date.

4.
J Colloid Interface Sci ; 434: 104-12, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25170603

RESUMO

Chemical exfoliation method was applied to transform bulky assemblies of Au(I)-3-mercaptopropionate (MPA) coordination polymer (CP) to nanosheets and nanostrings using sodium citrate as an exfoliator. The exfoliation process and the structural characteristics of the Au(I)-MPA nanosheets and nanostrings were fully investigated by transmission electron microscopy, atomic force microscopy, UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy and so on. As the structural rigidity and stability of the obtained Au(I)-MPA nanosheets, they are ideal precursors for fabrication of water soluble gold nanoparticle assemblies through progressive pyrolysis. This work provides a significant strategy toward the morphology regulation of CP nanostructures and will inspire further development of this research area.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa