Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
BMC Microbiol ; 24(1): 257, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997643

RESUMO

BACKGROUND: The increase in the resistance of bacterial strains to antibiotics has led to research into the bactericidal potential of non-antibiotic compounds. This study aimed to evaluate in vitro antibacterial/ antibiofilm properties of nisin and selenium encapsulated in thiolated chitosan nanoparticles (N/Se@TCsNPs) against prevalent enteric pathogens including standard isolates of Vibrio (V.) cholerae O1 El Tor ATCC 14,035, Campylobacter (C.) jejuni ATCC 29,428, Salmonella (S.) enterica subsp. enterica ATCC 19,430, Shigella (S.) dysenteriae PTCC 1188, Escherichia (E.) coli O157:H7 ATCC 25,922, Listeria (L.) monocytogenes ATCC 19,115, and Staphylococcus (S.) aureus ATCC 29,733. METHODS: The synthesis and comprehensive analysis of N/Se@TCsNPs have been completed. Antibacterial and antibiofilm capabilities of N/Se@TCsNPs were evaluated through broth microdilution and crystal violet assays. Furthermore, the study included examining the cytotoxic effects on Caco-2 cells and exploring the immunomodulatory effects of N/Se@TCsNPs. This included assessing the levels of both pro-inflammatory (IL-6 and TNFα) and anti-inflammatory (IL-10 and TGFß) cytokines and determining the gene expression of TLR2 and TLR4. RESULTS: The N/Se@TCsNPs showed an average diameter of 136.26 ± 43.17 nm and a zeta potential of 0.27 ± 0.07 mV. FTIR spectroscopy validated the structural features of N/Se@TCsNPs. Scanning electron microscopy (SEM) images confirmed their spherical shape and uniform distribution. Thermogravimetric Analysis (TGA)/Differential Scanning Calorimetry (DSC) tests demonstrated the thermal stability of N/Se@TCsNPs, showing minimal weight loss of 0.03%±0.06 up to 80 °C. The prepared N/Se@TCsNPs showed a thiol content of 512.66 ± 7.33 µmol/g (p < 0.05), an encapsulation efficiency (EE) of 69.83%±0.04 (p ≤ 0.001), and a drug release rate of 74.32%±3.45 at pH = 7.2 (p ≤ 0.004). The synthesized nanostructure demonstrated potent antibacterial activity against various isolates, with effective concentrations ranging from 1.5 ± 0.08 to 25 ± 4.04 mg/mL. The ability of N/Se@TCsNPs to reduce bacterial adhesion and internalization in Caco-2 cells underscored their antibiofilm properties (p ≤ 0.0001). Immunological studies indicated that treatment with N/Se@TCsNPs led to decreased levels of inflammatory cytokines IL-6 (14.33 ± 2.33 pg/mL) and TNFα (25 ± 0.5 pg/mL) (p ≤ 0.0001), alongside increased levels of anti-inflammatory cytokines IL-10 (46.00 ± 0.57 pg/mL) and TGFß (42.58 ± 2.10 pg/mL) in infected Caco-2 cells (p ≤ 0.0001). Moreover, N/Se@TCsNPs significantly reduced the expression of TLR2 (0.22 ± 0.09) and TLR4 (0.16 ± 0.05) (p < 0.0001). CONCLUSION: In conclusion, N/Se@TCsNPs exhibited significant antibacterial/antibiofilm/anti-attachment/immunomodulatory effectiveness against selected Gram-positive and Gram-negative enteric pathogens. However, additional ex-vivo and in-vivo investigations are needed to fully assess the performance of nanostructured N/Se@TCsNPs.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Testes de Sensibilidade Microbiana , Nanopartículas , Nisina , Selênio , Nisina/farmacologia , Nisina/química , Quitosana/química , Quitosana/farmacologia , Biofilmes/efeitos dos fármacos , Humanos , Células CACO-2 , Nanopartículas/química , Selênio/química , Selênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Aderência Bacteriana/efeitos dos fármacos , Citocinas/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
Saudi Pharm J ; 31(5): 669-677, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181138

RESUMO

Microneedle patches are promising transdermal drug delivery platforms with minimal invasiveness in a painless manner. Microneedle patch could be a promising alternate route for delivery of drugs having poor solubility and low bioavailability. This research work therefore, aimed to develop and characterize microneedle patch of thiolated chitosan (TCS) and polyvinyl acetate (PVA) for the systemic delivery of dydrogesterone (DYD). TCS-PVA-based microneedle patch was fabricated with 225 needles having a length of 575 µm with the sharp pointed end. Different ratios of TCS-PVA-based patch were employed to investigate the effects of mechanical tensile strength and percentage elongation. The scanning electron microscopy (SEM) revealed intact sharp-pointed needles. In vitro dissolution studies of microneedle patch (MN-P) were carried out by modified Franz-diffusion cell revealing the sustained release of DYD 81.45 ± 2.768 % at 48 hrs as compared to pure drug that showed 96.7 ± 1.75 % at 12 hrs. The transport of DYD (81%) across skin reaching the systemic circulation was evaluated through ex vivo permeation studies of MN-P. The skin penetration study through the parafilm M method showed good penetration with no deformation and breakage of needles along with no visible signs of skin irritation. Histological study of mice skins clearly showed the deeper penetration of needles into the skin. In summary, as-prepared MN-P show potential in developing an effective transdermal delivery system for DYD.

3.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830145

RESUMO

Hydrogels constructed from naturally derived polymers provide an aqueous environment that encourages cell growth, however, mechanical properties are poor and degradation can be difficult to predict. Whilst, synthetic hydrogels exhibit some improved mechanical properties, these materials lack biochemical cues for cells growing and have limited biodegradation. To produce hydrogels that support 3D cell cultures to form tissue mimics, materials must exhibit appropriate biological and mechanical properties. In this study, novel organic-inorganic hybrid hydrogels based on chitosan and silica were prepared using the sol-gel technique. The chemical, physical and biological properties of the hydrogels were assessed. Statistical analysis was performed using One-Way ANOVAs and independent-sample t-tests. Fourier transform infrared spectroscopy showed characteristic absorption bands including amide II, Si-O and Si-O-Si confirming formation of hybrid networks. Oscillatory rheometry was used to characterise the sol to gel transition and viscoelastic behaviour of hydrogels. Furthermore, in vitro degradation revealed both chitosan and silica were released over 21 days. The hydrogels exhibited high loading efficiency as total protein loading was released in a week. There were significant differences between TC2G and C2G at all-time points (p < 0.05). The viability of osteoblasts seeded on, and encapsulated within, the hydrogels was >70% over 168 h culture and antimicrobial activity was demonstrated against Pseudomonas aeruginosa and Enterococcus faecalis. The hydrogels developed here offer alternatives for biopolymer hydrogels for biomedical use, including for application in drug/cell delivery and for bone tissue engineering.


Assuntos
Encapsulamento de Células/métodos , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Dióxido de Silício/química , Antibacterianos/química , Antibacterianos/farmacologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Microscopia Eletrônica de Varredura , Transição de Fase , Espectroscopia de Prótons por Ressonância Magnética , Pseudomonas aeruginosa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos
4.
AAPS PharmSciTech ; 22(8): 251, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34668091

RESUMO

The major challenge associated with the treatment of neurological disorders is the inefficiency of drugs to enter the Central Nervous System (CNS). Polymer-drug conjugates are now being tailored to overcome this hindrance associated with conventional drugs. The study aimed at developing polymer hybrid nasal nanocomposite for enhanced delivery of Centella to the CNS. Thiolated chitosan was complexed with Centella to form a composite using EDAC hydrochloride. The composite was characterized by FTIR, XRD, NMR, and MS. Further, this composite was converted into a nanoformulation by the ionic-gelation method, characterized, and subjected to ex vivo permeation studies. Additionally, MTT assay was performed using Human Uumbilical cord Vein Endothelial Cells (HUVECs) mimicking Blood-Brain Barrier (BBB) to establish the safety of nanocomposite. The targeting efficacy was predicted by molecular docking studies against receptors associated with BBB. The FTIR, XRD, NMR, and MS studies confirmed the chemical conjugation of thiolated chitosan with Centella. Nanocomposite characterization through SEM, AFM, and DLS confirmed the size and stability of the developed nanocomposite having a zeta potential of - 14.5 mV and PDI of 0.260. The nanocomposite showed no signs of nasal ciliotoxicity and good permeation of 89.44 ± 1.75% (mean ± SD, n = 3) at 8 h across the nasal mucosa. MTT assay showed that the nanocomposite had lesser toxicity compared to the free drug (IC50 of Centella-269.1 µg/mL and IC50 of CTC nanocomposite-485.375 µg/mL). The affinity of polymer to the BBB receptors as proved by docking studies suggests the ability of polymer-based nanocomposite to concentrate in the brain post nasal administration.


Assuntos
Centella , Quitosana , Nanocompostos , Nanopartículas , Administração Intranasal , Barreira Hematoencefálica , Células Endoteliais , Humanos , Simulação de Acoplamento Molecular , Mucosa Nasal
5.
AAPS PharmSciTech ; 21(2): 68, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31950394

RESUMO

Microneedle patch is a prominent strategy with minimal invasion and painless application to improve skin penetration of drug molecules. Herein, we report microneedle patch (MNP) as an alternative to the oral route for the systemic delivery of tacrolimus (TM), an immunosuppressant drug. Thiolated chitosan (TCS) based microneedle patch was fabricated and characterized in vitro and in vivo for its mechanical strength, skin penetration, drug release, and skin irritation. The MNP having 225 needles with 575 µm showed good mechanical properties in terms of tensile strength and percentage elongation. The skin penetration showed 84% penetration with no breakage. Histology of the mice skin after insertion showed the penetration of needles into the dermis. In vitro release and ex vivo permeation studies through Franz diffusion cell showed the sustained release (82.5%) of TM from the MNP with significantly higher (p < 0.05) skin permeation as compared with controls, respectively. Moreover, in vivo biocompatibility in rats showed the safety of the material and patch. Thus, the TCS microneedle patch has the potential to be developed as a transdermal delivery system for tacrolimus with improved bioavailability and sustained release over a longer period.


Assuntos
Quitosana/química , Imunossupressores/administração & dosagem , Tacrolimo/administração & dosagem , Adesivo Transdérmico , Animais , Cultura em Câmaras de Difusão , Dissulfetos/química , Sistemas de Liberação de Medicamentos , Desenho de Equipamento , Microinjeções , Agulhas , Ratos , Pele/metabolismo , Compostos de Sulfidrila , Resistência à Tração
6.
AAPS PharmSciTech ; 21(2): 60, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912272

RESUMO

The formation of biofilm by Streptococcus mutans on the tooth surface is the primary cause of dental caries and periodontal diseases, and fluoride (F) has shown tremendous potential as a therapeutic moiety against these problems. Herein, we report an efficient multi-ingredient bioadhesive film-based delivery system for oral cavity to combat dental problems with an ease of administration. Thiolated chitosan-based bioadhesive film loaded with calcium fluoride nanoparticles (CaF2 NPs) and lignocaine as a continuous reservoir for prolonged delivery was successfully prepared and characterized. The polygonal CaF2 NPs with an average particle size less than 100 nm, PDI 0.253, and + 6.10 mV zeta potential were synthesized and loaded in film. The energy dispersive x-ray (EDX) spectroscopy confirmed the presence 33.13% F content in CaF2 NPs. The characterization of the three film trials for their mechanical strength, bioadhesion, drug release, and permeation enhancement suggested film B as better among the three trials and showed significant outcomes, indicating the potential application of the medicated bioadhesive film. In vitro dissolution studies revealed sustained release pattern of lignocaine and CaF2 NP following Krosmeyer-Peppas model over 8 h. Franz diffusion studies showed the prolonged contact time of film with mucosa that facilitated the transport of CaF2 NPs and lignocaine across the mucosa. Hence, the prepared bioadhesive film-based system showed good potential for better management of dental problems. Graphical Abstract.


Assuntos
Fluoreto de Cálcio/química , Lidocaína/química , Nanopartículas/química , Quitosana/química , Sistemas de Liberação de Medicamentos
7.
AAPS PharmSciTech ; 20(7): 288, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31410741

RESUMO

Proniosomes offer excellent potential for improved drug delivery, through versatile routes, by overcoming the permeation barriers faced by several drugs. The study was aimed to develop a thiomer gel containing duloxetine proniosomes for the intranasal delivery, improving its bioavailability and brain delivery through olfactory system. Duloxetine-loaded proniosomes were optimized through Design-Expert Software, prepared by coacervation phase separation method and then characterized in vitro for different vesicle features, and permeation enhancement potential using various techniques. The formulation F2, out of all the trials, fulfilled the maximum requisite of highest entrapment efficiency (76.21 ± 1.24%) and minimum vesicle size (223.91 ± 11.07 nm). The F2 was embedded in thiolated chitosan gel rendering it mucoadhesive and further characterized. The in vitro release showed a sustained drug release from the mucoadhesive proniosomal gel with only 54% drug release as compared to that of 71% from proniosome over 8 h, following Higuchi drug release model. Ex vivo permeation studies showed the enhancement ratio for the mucoadhesive proniosomal gel to be 1.86-fold greater than proniosomes, indicating a significant improvement in transmucosal permeation. The results suggest that incorporation of proniosomes into thiolated gel can significantly improve its mucoadhesion and retention time in the nasal cavity for providing a sustained drug release. Thus, gel formulation could be considered as a promising approach for efficient intranasal drug delivery of duloxetine. Graphical Abstract.


Assuntos
Quitosana/química , Cloridrato de Duloxetina/administração & dosagem , Intestinos , Compostos de Sulfidrila/química , Administração Intranasal , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Cloridrato de Duloxetina/farmacocinética , Géis
8.
AAPS PharmSciTech ; 20(2): 81, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30645705

RESUMO

To achieve remotely directed delivery of anticancer drugs, surface-decorated nanoparticles with ligands are reported. In this study, folic acid- and thiol-decorated chitosan nanoparticles loaded with docetaxel (DTX-NPs) were prepared for enhanced cellular internalization in cancer cells and improved oral absorption. The DTX-NPs were explored through in vitro and in vivo parameters for various parameters. The DTX-NPs were found to be monodisperse nanoparticles with an average particle size of 158.50 ± 0.36 nm, a polydispersity index of 0.36 ± 0.0, a zeta potential of + 18.30 ± 2.52 mV, and an encapsulation efficiency of 71.47 ± 5.62%. The drug release from DTX-NPs followed the Korsmeyer-Peppas model with about 78% of drug release in 12 h. In in vitro cytotoxicity studies against folate receptor, positive MDA-MBB-231 cancerous cells showed improved cytotoxicity with IC50 of 0.58 µg/mL, which is significantly lower as compared to docetaxel (DTX). Ex vivo permeation enhancement showed an efflux ratio of 0.99 indicating successful transport across the intestine. Oral bioavailability was significantly improved as Cmax and AUC were higher than DTX suspension. Overall, the results suggest that DTX-NPs can be explored as a promising carrier for oral drug delivery.


Assuntos
Antineoplásicos/química , Quitosana/química , Docetaxel/química , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Nanopartículas/química , Administração Oral , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/farmacocinética , Docetaxel/farmacologia , Humanos , Coelhos , Ratos , Compostos de Sulfidrila/química
9.
Chem Pharm Bull (Tokyo) ; 65(12): 1132-1143, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021499

RESUMO

Drug delivery represents one of the most important research fields within the pharmaceutical industry. Different strategies are reported every day in a dynamic search for carriers with the ability to transport drugs across the body, avoiding or decreasing toxic issues and improving therapeutic activity. One of the most interesting strategies currently under research is the development of drug delivery systems sensitive to different stimuli, due to the high potential attributed to the selective delivery of the payload. In this work, a stimuli-sensitive nanocarrier was built with a bifunctional acrylic polymer, linked by imine and disulfide bonds to thiolate chitosan, the latter being a biopolymer widely known in the field of tissue engineering and drug delivery by its biodegradability and biocompatibility. These polymer nanoparticles were exposed to different changes in pH and redox potential, which are environments commonly found inside cancer cells. The results proof the ability of the nanoparticles to keep the original structure when either changes in pH or redox potential were applied individually. However, when both stimuli were applied simultaneously, a disassembly of the nanoparticles was evident. These special characteristics make these nanoparticles suitable nanocarriers with potential for the selective delivery of anticancer drugs.


Assuntos
Quitosana/química , Portadores de Fármacos/síntese química , Nanopartículas/química , Polímeros/química , Antineoplásicos/química , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Oxirredução , Tamanho da Partícula , Compostos de Sulfidrila/química
10.
Biochim Biophys Acta ; 1840(9): 2730-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24946270

RESUMO

BACKGROUND: Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model. METHODS: CRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC. RESULTS: The 5-FU-TCS-NPs (size: 150±40nm, zeta potential: +48.2±5mV) and CRC-TCS-NPs (size: 150±20nm, zeta potential: +35.7±3mV) were proven to be compatible with blood. The in vitro drug release studies at pH4.5 and 7.4 showed a sustained release profile over a period of 4 days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72h, unlike bare CRC and 5-FU. CONCLUSIONS: To conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo. GENERAL SIGNIFICANCE: The enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases.


Assuntos
Quitosana , Neoplasias do Colo/tratamento farmacológico , Curcumina , Fluoruracila , Nanopartículas , Animais , Disponibilidade Biológica , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quitosana/farmacocinética , Quitosana/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Curcumina/farmacocinética , Curcumina/farmacologia , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Fluoruracila/farmacocinética , Fluoruracila/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos
11.
AAPS PharmSciTech ; 16(5): 1140-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25716329

RESUMO

This study aimed to fabricate mucoadhesive electrospun nanofiber mats containing α-mangostin for the maintenance of oral hygiene and reduction of the bacterial growth that causes dental caries. Synthesized thiolated chitosan (CS-SH) blended with polyvinyl alcohol (PVA) was selected as the mucoadhesive polymer. α-Mangostin was incorporated into the CS-SH/PVA solution and electrospun to obtain nanofiber mats. Scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and tensile strength testing were used to characterize the mats. The swelling degree and mucoadhesion were also determined. The nanofiber mats were further evaluated regarding their α-mangostin content, in vitro α-mangostin release, antibacterial activity, cytotoxicity, in vivo performance, and stability. The results indicated that the mats were in the nanometer range. The α-mangostin was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength, swelling, and mucoadhesive properties. The loading capacity increased when the initial amount of α-mangostin was increased. Rapid release of α-mangostin from the mats was achieved. Additionally, a fast bacterial killing rate occurred at the lowest concentration of nanofiber mats when α-mangostin was added to the mats. The mats were less cytotoxic after use for 72 h. Moreover, in vivo testing indicated that the mats could reduce the number of oral bacteria, with a good mouth feel. The mats maintained the amount of α-mangostin for 6 months. The results suggest that α-mangostin-loaded mucoadhesive electrospun nanofiber mats may be a promising material for oral care and the prevention of dental caries.


Assuntos
Antibacterianos/administração & dosagem , Quitosana/química , Cárie Dentária/prevenção & controle , Portadores de Fármacos , Mucosa Bucal/metabolismo , Nanofibras , Álcool de Polivinil/química , Compostos de Sulfidrila/química , Xantonas/administração & dosagem , Adesividade , Administração Bucal , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/toxicidade , Varredura Diferencial de Calorimetria , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/análogos & derivados , Quitosana/metabolismo , Quitosana/toxicidade , Cárie Dentária/microbiologia , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanotecnologia/métodos , Álcool de Polivinil/metabolismo , Álcool de Polivinil/toxicidade , Solubilidade , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus sanguis/efeitos dos fármacos , Streptococcus sanguis/crescimento & desenvolvimento , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/toxicidade , Suínos , Resistência à Tração , Difração de Raios X , Xantonas/química , Xantonas/metabolismo , Xantonas/toxicidade
12.
Carbohydr Polym ; 328: 121689, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220319

RESUMO

Influenza A virus (IAV) poses a significant threat to human and animal health, necessitating the development of universal influenza vaccines that can effectively activate mucosal immunity. Intranasal immunization has attracted significant attention due to its capacity to induce triple immune responses, including mucosal secretory IgA. However, inducing mucosal immunity through vaccination is challenging due to the self-cleansing nature of the mucosal surface. Thiolated chitosan (TCS) were explored for mucosal vaccine delivery, capitalizing on biocompatibility and bioadhesive properties of chitosan, with thiol modification enhancing mucoadhesive capability. The focus was on developing a universal nanovaccine by utilizing TCS-encapsulated virus-like particles displaying conserved B-cell and T-cell epitopes from M2e and NP proteins of IAV. The optimal conditions for nanoparticle formation were investigated by adjusting the thiol groups content of TCS and the amount of sodium tripolyphosphate. The nanovaccine induced robust immune responses and provided complete protection against IAVs from different species following intranasal immunization. The broad protective effect of nanovaccines can be attributed to the synergistic effect of antibodies and T cells. This study developed a universal intranasal nanovaccine and demonstrated the potential of TCS in the development of mucosal vaccines for respiratory infectious diseases.


Assuntos
Quitosana , Vírus da Influenza A , Infecções por Orthomyxoviridae , Animais , Humanos , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Nanovacinas , Imunidade Celular , Compostos de Sulfidrila , Camundongos Endogâmicos BALB C , Anticorpos Antivirais
13.
Carbohydr Polym ; 336: 122115, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670750

RESUMO

To alleviate skull defects and enhance the biological activity of taxifolin, this study utilized the thin-film dispersion method to prepare paclitaxel liposomes (TL). Thiolated chitosan (CSSH)-modified TL (CTL) was synthesized through charge interactions. Injectable hydrogels (BLG) were then prepared as hydrogel scaffolds loaded with TAX (TG), TL (TLG), and CTL (CTLG) using a Schiff base reaction involving oxidized dextran and carboxymethyl chitosan. The study investigated the bone reparative properties of CTLG through molecular docking, western blot techniques, and transcriptome analysis. The particle sizes of CTL were measured at 248.90 ± 14.03 nm, respectively, with zeta potentials of +36.68 ± 5.43 mV, respectively. CTLG showed excellent antioxidant capacity in vitro. It also has a good inhibitory effect on Escherichia coli and Staphylococcus aureus, with inhibition rates of 93.88 ± 1.59 % and 88.56 ± 2.83 % respectively. The results of 5-ethynyl-2 '-deoxyuridine staining, alkaline phosphatase staining and alizarin red staining showed that CTLG also had the potential to promote the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1). The study revealed that CTLG enhances the expression of osteogenic proteins by regulating the Wnt signaling pathway, shedding light on the potential application of TAX and bone regeneration mechanisms.


Assuntos
Proliferação de Células , Quitosana , Hidrogéis , Lipossomos , Osteoblastos , Quercetina , Quercetina/análogos & derivados , Crânio , Via de Sinalização Wnt , Animais , Quitosana/análogos & derivados , Quitosana/química , Quitosana/farmacologia , Quercetina/farmacologia , Quercetina/química , Lipossomos/química , Via de Sinalização Wnt/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos , Crânio/efeitos dos fármacos , Crânio/patologia , Crânio/metabolismo , Ratos , Regeneração Óssea/efeitos dos fármacos , Ratos Sprague-Dawley , Osteogênese/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Diferenciação Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular
14.
Pharmaceutics ; 16(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38931815

RESUMO

Most infectious diseases of the gastrointestinal tract can easily be treated by exploiting the already available antibiotics with the change in administration approach and delivery system. Ciprofloxacin (CIP) is used as a drug of choice for many bacterial infections; however, long-term therapy and off-site drug accumulation lead to an increased risk of tendinitis and peripheral neuropathy. To overcome this issue, nanotechnology is being exploited to encapsulate antibiotics within polymeric structures, which not only facilitates dose maintenance at the infection site but also limits off-site side effects. Here, sodium alginate (SA) and thiol-anchored chitosan (TC) were used to encapsulate CIP via a calcium chloride (CaCl2) cross-linker. For this purpose, the B-390 encapsulator was employed in the preparation of nanobeads using a simple technique. The hydrogel-like sample was then freeze-dried, using trehalose or mannitol as a lyoprotectant, to obtain a fine dry powder. Design of Experiment (DoE) was utilized to optimize the nanobead production, in which the influence of different independent variables was studied for their outcome on the polydispersity index (PDI), particle size, zeta potential, and percentage encapsulation efficiency (% EE). In vitro dissolution studies were performed in simulated saliva fluid, simulated gastric fluid, and simulated intestinal fluid. Antibacterial and anti-inflammatory studies were also performed along with cytotoxicity profiling. By and large, the study presented positive outcomes, proving the advantage of using nanotechnology in fabricating new delivery approaches using already available antibiotics.

15.
ACS Nano ; 18(22): 14650-14660, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38761383

RESUMO

Atmospheric water harvesting is a practical strategy that is achieved by removing materials from air moisture to relieve global water scarcity. Here we design a water-harvester (i.e., MOF-303/thiolated polymer composite (MTC)) by using a metal-organic framework (MOF-303) and thiolated chitosan (TC) skeleton. Intermolecular hydrogen bonding between TC and MOF-303 facilitates porous structures with enlarged air-polymer interfaces for long cycling life and high capacity at low relative humidity. Benefiting from synergetic effects on porosity and anchorage for accelerating the uptake-release of moisture, MTC exhibits a rapid water uptake capacity of 0.135 g/g in 60 min under 12.5 RH% and ultrafast water desorption kinetics of 0.003 g/g/min at 8.5 RH%, which is superior to the as-reported MOF-303 based adsorbents. At low heat (∼40 °C), the water desorption and collection rate, respectively, are 0.0195 and 0.0168 g/g/min within 210 min, showing ultrahigh harvesting efficiency. These results highlight the enormous potential as promising materials for solving the world's water scarcity crisis. This study offers an insight into the design of AWH materials, which can be extended into applications in some realms, e.g., freshwater development for industry in arid areas, water engineering-related devices and systems, etc.

16.
Int J Biol Macromol ; 265(Pt 2): 130841, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553389

RESUMO

Puerarin (PUE), a natural and biologically active isoflavone extracted from Chinese medicine Pueraria lobata, can self-assemble to form a hydrogel without other chemical modifications. However, although PUE hydrogel has pH responsivity, but it is difficult to adapt to the changeable pathological environment. Therefore, thiolated chitosan (TCS) is synthesized and hybridized with PUE hydrogel to prepare TCS10/PUE composite hydrogel. The results of rheological measurement showed that the resultant composite hydrogels inherited the low loss performance of TCS hydrogel, which means that they have stronger elasticity. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images displayed that TCS10/PUE composite hydrogel has a fibrous-network structure. X-Ray Diffractometer (XRD) and Fourier transform infrared spectroscopy (FT-IR) proved the existence of hydrogen bonds and disulfide bonds in the formation of composite hydrogel. Degradation experiment showed that TCS10/PUE composite hydrogels have pH and glutathione (pH/GSH) dual sensitivity. Furthermore, TCS10/PUE composite hydrogels exhibited multi-functionality including thixotropy, cytocompatibility, antibacterial and anti-inflammatory properties. Berberine chloride hydrate (BCH) was further used as a model drug for in vitro release study. BCH and PUE could be released cooperatively under pH/GSH dual responsivity. These results indicated that the resultant composite hydrogel has eminent pH/GSH dual responsivity and could act as a potential new intelligent drug carrier.


Assuntos
Quitosana , Isoflavonas , Portadores de Fármacos/química , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
17.
Sci Rep ; 14(1): 11431, 2024 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763930

RESUMO

Our current study reports the successful synthesis of thiolated chitosan-based nanoparticles for targeted drug delivery of 5-Fluorouracil. This process was achieved through the ionic gelation technique, aiming to improve the efficacy of the chemotherapeutic moiety by modifying the surface of the nanoparticles (NPs) with a ligand. We coated these NPs with hyaluronic acid (HA) to actively target the CD44 receptor, which is frequently overexpressed in various solid malignancies, including breast cancer. XRD, FTIR, SEM, and TEM were used for the physicochemical analysis of the NPs. These 5-Fluorouracil (5-FU) loaded NPs were evaluated on MDA-MB-231 (a triple-negative breast cell line) and MCF-10A (normal epithelial breast cells) to determine their in vitro efficacy. The developed 5-FU-loaded NPs exhibited a particle size within a favorable range (< 300 nm). The positive zeta potential of these nanoparticles facilitated their uptake by negatively charged cancer cells. Moreover, they demonstrated robust stability and achieved high encapsulation efficiency. These nanoparticles exhibited significant cytotoxicity compared to the crude drug (p < 0.05) and displayed a promising release pattern consistent with the basic diffusion model. These traits improve the pharmacokinetic profile, efficacy, and ability to precisely target these nanoparticles, offering a potentially successful anticancer treatment for breast cancer. However, additional in vivo assessments of these formulations are obligatory to confirm these findings.


Assuntos
Quitosana , Fluoruracila , Receptores de Hialuronatos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Fluoruracila/química , Quitosana/química , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Nanopartículas/química , Linhagem Celular Tumoral , Feminino , Portadores de Fármacos/química , Ácido Hialurônico/química , Sistemas de Liberação de Medicamentos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula
18.
Int J Pharm ; 658: 124200, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38710298

RESUMO

This study aimed to develop oral lipidic hybrids of amikacin sulfate (AMK), incorporating thiolated chitosan as a P-glycoprotein (P-gp) inhibitor to enhance intestinal absorptivity and bioavailability. Three formulations were designed: PEGylated Liposomes, Chitosan-functionalized PEGylated (Chito-PEGylated) Lipidic Hybrids, and Thiolated Chito-PEGylated Lipidic Hybrids. The physical characteristics of nanovesicles were assessed. Ex-vivo permeation and confocal laser scanning microscopy (CLSM) studies were conducted to evaluate the formulations' potential to enhance AMK intestinal permeability. In-vivo pharmacokinetic studies in rats and histological/biochemical investigations assessed the safety profile and oral bioavailability. The AMK-loaded Thiolated Chito-PEGylated Lipidic Hybrids exhibited favorable physical characteristics, higher ex-vivo permeation parameters, and verified P-gp inhibition via CLSM. They demonstrated heightened oral bioavailability (68.62% absolute bioavailability) and a sufficient safety profile. Relative bioavailability was significantly higher (1556.3% and 448.79%) compared to PEGylated Liposomes and Chito-PEGylated Lipidic Hybrids, respectively, indicating remarkable oral AMK delivery with fewer doses, reduced side effects, and enhanced patient compliance.


Assuntos
Amicacina , Antibacterianos , Disponibilidade Biológica , Quitosana , Lipídeos , Lipossomos , Polietilenoglicóis , Animais , Polietilenoglicóis/química , Masculino , Administração Oral , Quitosana/química , Amicacina/farmacocinética , Amicacina/administração & dosagem , Amicacina/química , Lipídeos/química , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ratos , Ratos Sprague-Dawley , Absorção Intestinal , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacocinética , Ratos Wistar
19.
ACS Biomater Sci Eng ; 10(4): 2282-2298, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526450

RESUMO

Allergic rhinitis (AR) is a type-I hypersensitivity disease mediated by immunoglobulin E (IgE). Although antihistamines, glucocorticoids, leukotriene receptor antagonists, and other drugs are widely used to treat AR, the various adverse side effects of long-term use of these drugs should not be ignored. Therefore, more effective and safe natural alternative strategies are urgently needed. To this end, this study designed a nanosupramolecular delivery system composed of ß-cyclodextrin supramolecular polymer (PCD), thiolated chitosan (TCS), and natural polyphenol epigallocatechin gallate (EGCG) for intranasal topical continuous treatment of AR. The TCS/PCD@EGCG nanocarriers exhibited an excellent performance in terms of retention and permeability in the nasal mucosa and released the vast majority of EGCG responsively in the nasal microenvironment, thus resulting in the significantly high antibacterial and antioxidant capacities. According to the in vitro model, compared with free EGCG, TCS/PCD@EGCG inhibited mast cell activity and abnormal histamine secretion in a more long-term and sustained manner. According to the in vivo model, whether in the presence of continuous or intermittent administration, TCS/PCD@EGCG substantially inhibited the secretion of allergenic factors and inflammatory factors, mitigated the pathological changes of nasal mucosa, alleviated the symptoms of rhinitis in mice, and produced a satisfactory therapeutic effect on AR. In particular, the therapeutic effect of TCS/PCD@EGCG systems were even superior to that of budesonide during intermittent treatment. Therefore, the TCS/PCD@EGCG nanocarrier is a potential long-lasting antiallergic medicine for the treatment of AR.


Assuntos
Catequina/análogos & derivados , Rinite Alérgica , Animais , Camundongos , Rinite Alérgica/tratamento farmacológico , Alérgenos/uso terapêutico , Administração Intranasal , Imunoglobulina E/uso terapêutico
20.
Pharmaceutics ; 15(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765307

RESUMO

Risedronate-loaded mPEG-coated hydroxyapatite, thiolated chitosan-based (coated) and non-coated nanoparticles were tested for their potential effects in the treatment of osteoporosis. The prepared nanoparticles were evaluated for their bone-targeting potential by inducing osteoporosis in female Wistar rats via oral administration of Dexona (dexamethasone sodium phosphate). In vivo pharmacokinetic and pharmacodynamic studies were performed on osteoporotic rat models treated with different formulations. The osteoporotic model treated with the prepared nanoparticles indicated a significant effect on bone. The relative bioavailability was enhanced for RIS-HA-TCS-mPEG nanoparticles given orally compared to RIS-HA-TCS, marketed, and API suspension. Biochemical investigations also showed a significant change in biomarker levels, ultimately leading to bone formation/resorption. Micro-CT analysis of bone samples also demonstrated that the RIS-HA-TCS-mPEG-treated group showed the best results compared to other treatment groups. Moreover, the histology of bone treated with RIS-HA-TCS-mPEG showed a marked restoration of the architecture of trabecular bone along with a well-connected bone matrix and narrow inter-trabecular spaces compared to the toxic group. A stability analysis was also carried out according to ICH guidelines (Q1AR2), and it was found that RIS-HA-TCS-mPEG was more stable than RIS-HA-TCS at 25 °C. Thus, the results of present study indicated that mPEG-RIS-HA-TCS has excellent potential for sustained delivery of RIS for the treatment and prevention of osteoporosis, and for minimizing the adverse effects of RIS typically induced via oral administration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa