Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023143

RESUMO

Effective interplay between the uterus and the embryo is essential for pregnancy establishment, however, convenient methods to screen embryo implantation success and maternal uterine response in experimental mouse models are currently lacking. Here we report 3DMOUSEneST, a groundbreaking method for analyzing mouse implantation sites based on label-free higher harmonic generation microscopy, providing unprecedented insights into the embryo-uterine dynamics during early pregnancy. The 3DMOUSEneST method incorporates second-harmonic generation microscopy to image the three-dimensional structure formed by decidual fibrillar collagen, named 'decidual nest', and third-harmonic generation microscopy to evaluate early conceptus (defined as the embryo and extraembryonic tissues) growth. We demonstrate that decidual nest volume is a measurable indicator of decidualization efficacy and correlates with the probability of early pregnancy progression based on a logistic regression analysis using Smad1/5 and Smad2/3 conditional knockout mice with known implantation defects. 3DMOUSEneST has great potential to become a principal method for studying decidual fibrillar collagen and characterizing mouse models associated with early embryonic lethality and fertility issues.

2.
Nano Lett ; 24(10): 3067-3073, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426817

RESUMO

Integrated silicon plasmonic circuitry is becoming integral for communications and data processing. One key challenge in implementing such optical networks is the realization of optical sources on silicon platforms, due to silicon's indirect bandgap. Here, we present a silicon-based metal-encapsulated nanoplasmonic waveguide geometry that can mitigate this issue and efficiently generate light via third-harmonic generation (THG). Our waveguides are ideal for such applications, having strong power confinement and field enhancement, and an effective use of the nonlinear core area. This unique device was fabricated, and experimental results show efficient THG conversion efficiencies of η = 4.9 × 10-4, within a core footprint of only 0.24 µm2. Notably, this is the highest absolute silicon-based THG conversion efficiency presented to date. Furthermore, the nonlinear emission is not constrained by phase matching. These waveguides are envisioned to have crucial applications in signal generation within integrated nanoplasmonic circuits.

3.
Nano Lett ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150721

RESUMO

Nonlinear chiral photonics explores the nonlinear response of chiral structures, and it offers a pathway to novel optical functionalities not accessible through linear or achiral systems. Here we present the first application of nanostructured van der Waals materials to nonlinear chiral photonics. We demonstrate the 3 orders of magnitude enhancement of the third-harmonic generation from hBN metasurfaces driven by quasi-bound states in the continuum and accompanied by strong nonlinear circular dichroism at the resonances. This novel platform for chiral metaphotonics can be employed for achieving large circular dichroism combined with high-efficiency harmonic generation in a broad frequency range.

4.
Nano Lett ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847507

RESUMO

The strong light localization and long photon lifetimes in whispering gallery mode (WGM) microresonators, benefiting from a high-quality (Q) factor and a small mode volume (V), could significantly enhance light-matter interactions, enabling efficient nonlinear photon generation and paving the way for exploring novel on-chip optical functionalities. However, the leakage of energy from bending losses severely limits the improvement of the Q factor for subwavelength WGM microresonators. Here, we demonstrated an integrated self-suspended WGM microresonator that combines external rings and bridges with a microdisk on a platform of silicon on insulator, achieving about one-hundred-fold enhancement in the Q factor and an ultrasmall mode volume of 2.67(/λnSi)3 as predicted by numerical simulations. We experimentally confirmed the improved performance of the subwavelength WGM resonator with the dramatic enhancement of third-harmonic generation and second-harmonic generation on this device. Our work is anticipated to enhance light-matter interactions on small-footprint microresonators and boost the development of efficient integrated nonlinear and quantum photonics.

5.
Microsc Microanal ; 30(4): 671-680, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38993166

RESUMO

We report application of the knife-edge technique at the sharp edges of WS2 and MoS2 monolayer flakes for lateral and axial resolution assessment in all three modalities of nonlinear laser scanning microscopy: two-photon excited fluorescence (TPEF), second- and third-harmonic generation (SHG, THG) imaging. This technique provides a high signal-to-noise ratio, no photobleaching effect and shows good agreement with standard resolution measurement techniques. Furthermore, we assessed both the lateral resolution in TPEF imaging modality and the axial resolution in SHG and THG imaging modality directly via the full-width at half maximum parameter of the corresponding Gaussian distribution. We comprehensively analyzed the factors influencing the resolution, such as the numerical aperture, the excitation wavelength and the refractive index of the embedding medium for the different imaging modalities. Glycerin was identified as the optimal embedding medium for achieving resolutions closest to the theoretical limit. The proposed use of WS2 and MoS2 monolayer flakes emerged as promising tools for characterization of nonlinear imaging systems.

6.
Adv Sci (Weinh) ; : e2404094, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973354

RESUMO

Nonlinear nanophotonic devices have shown great potential for on-chip information processing, quantum source, 3D microfabrication, greatly promoting the developments of integrated optics, quantum science, nanoscience and technologies, etc. To promote the applications of nonlinear nanodevices, improving the nonlinear efficiency, expanding the spectra region of nonlinear response and reducing device thickness are three key issues. Herein, this study focuses on the nonlinear effect of third-harmonic generation (THG), and present a thin Si meta-sructure to improve the THG efficiency in the ultraviolet (UV) region. The measured THG efficiency is up to 10-5 at an emission wavelength of 309 nm. Also, the THG nanosystem is only 100 nm in thickness, which is two-five times thinner than previous all-dielectric nanosystems applied in THG studies. These findings not only present a powerful thin meta-structure with highly efficient THG emission in UV region, but also provide a constructive avenue for further understanding the light-matter interactions at subwavelength scales, guiding the design and fabricating of advanced photonic devices in future.

7.
ACS Nano ; 18(5): 4388-4397, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258757

RESUMO

Coherent deep ultraviolet (DUV) light sources are crucial for various applications such as nanolithography, biomedical imaging, and spectroscopy. DUV light sources can be generated by using conventional nonlinear optical crystals (NLOs). However, NLOs are limited by their bulky size, inadequate transparency at the DUV regime, and stringent phase-matching requirements for harmonic generation. Recently, dielectric metasurfaces support high Q-factor resonances and offer a promising approach for efficient harmonic generation at short wavelengths. In this study, we demonstrated a crystalline silicon (c-Si) metasurface simultaneously exciting modal phase-matched bound states in the continuum (BIC) resonance at the fundamental wavelength of 840 nm with a higher degree of freedom for precise control of the BIC resonance and a plasmonic resonance at the wavelength of 280 nm in the DUV to enhance third harmonic generation (THG). We experimentally achieved a Q-factor of ∼180 owing to the relatively large refractive index of the c-Si and the geometric symmetry breaking of the structure. We realized THG at a wavelength of 280 nm with a power of 14.5 nW by using a peak power density of 15 GW/cm2 excitation. The measured THG power is 14 times higher than the state-of-the-art THG dielectric metasurfaces using the same peak power density in the DUV regime, and the maximum obtained THG power enhancement factor is up to 48. This approach relies on the significant third-order nonlinear susceptibility of c-Si, the interband plasmonic nature of the c-Si in the DUV, and the strong field confinement of BIC resonance to boost overall nonlinear conversion efficiency to 5.2 × 10-6% in the DUV regime. Our work shows the potential of c-Si BIC metasurfaces for developing efficient and ultracompact DUV light sources using high-efficacy nonlinear optical devices.

8.
J Phys Condens Matter ; 36(43)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39029502

RESUMO

Motivated by the recent developments in terahertz spectroscopy using pump-probe setups to study correlated electronic materials, we review the field theoretical formalism to compute finite frequency nonlinear electro-optical responses in centrosymmetric systems starting from basic time dependent perturbation theory. We express the nonlinear current kernel as a sum of several causal response functions. These causal functions cannot be evaluated using perturbative field theory methods, since they are not contour ordered. Consequently, we associate each response function with a corresponding imaginary time ordered current correlation function, since the latter can be factorized using Wick's theorem. The mapping between the response functions and the correlation functions, suitably analytically continued to real frequencies, is proven exactly. We derive constraints satisfied by the nonlinear current kernel and we prove a generalizedf-sum rule for the nonlinear conductivity, all of which are consequences of particle number conservation. The constraints guarantee that the nonlinear static responses are free from spurious divergences. We apply the theory to compute the gauge invariant nonlinear conductivity of a system of noninteracting electrons in the presence of weak disorder. As special cases of this generalized nonlinear response, we discuss its third harmonic and its instantaneous terahertz Kerr signals. The formalism can be used to compute the nonlinear conductivity in symmetry broken phases of electronic systems such as superconductors, density waves and nematic states.

9.
Cell Rep Methods ; 4(3): 100735, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38503290

RESUMO

Label-free imaging methodologies for nerve fibers rely on spatial signal continuity to identify fibers and fail to image free intraepidermal nerve endings (FINEs). Here, we present an imaging methodology-called discontinuity third harmonic generation (THG) microscopy (dTHGM)-that detects three-dimensional discontinuities in THG signals as the contrast. We describe the mechanism and design of dTHGM and apply it to reveal the bead-string characteristics of unmyelinated FINEs. We confirmed the label-free capability of dTHGM through a comparison study with the PGP9.5 immunohistochemical staining slides and a longitudinal spared nerve injury study. An intraepidermal nerve fiber (IENF) index based on a discontinuous-dot-connecting algorithm was developed to facilitate clinical applications of dTHGM. A preliminary clinical study confirmed that the IENF index was highly correlated with skin-biopsy-based IENF density (Pearson's correlation coefficient R = 0.98) and could achieve differential identification of small-fiber neuropathy (p = 0.0102) in patients with diabetic peripheral neuropathy.


Assuntos
Neuropatias Diabéticas , Microscopia de Geração do Segundo Harmônico , Neuropatia de Pequenas Fibras , Humanos , Fibras Nervosas , Pele/inervação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa