Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 105(10): 3171-3180, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33591833

RESUMO

Thousand cankers disease (TCD) is caused by the fungal pathogen Geosmithia morbida and vectored by the walnut twig beetle Pityophthorus juglandis. In infected walnut and butternut (Juglans spp.) hosts and wingnut species (Pterocarya spp.) hosts, tree decline and death results in ecological disruption and economic losses. A rapid molecular detection protocol for TCD using microsatellite markers can confirm the presence of insect vector or fungal pathogen DNA, but it requires specialized expensive equipment and technical expertise. Using four different experimental approaches, capillary and conventional gel electrophoresis, and traditional polymerase chain reaction (PCR) and quantitative PCR (qPCR), we describe simplified and inexpensive processes for diagnostic confirmation of TCD. The improved and rapid detection protocols reported in this study reduce time and equipment costs associated with detection of molecular pest and pathogen DNA by (1) using conventional gel electrophoresis or TaqMan molecular probes to elucidate the detection limits for G. morbida and P. juglandis DNA and (2) identifying resources that allow visualization of positive test results for infected host plant tissue samples. Conventional gel electrophoresis and TaqMan molecular probe protocols detected presence of DNA from TCD-associated fungal and insect samples. These procedural improvements can be readily adopted by diagnostic end-users and adapted for use with other complex disease systems to enable rapid pest and pathogen detection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Besouros , Juglans , Gorgulhos , Animais , Eletroforese , Doenças das Plantas
2.
J Chem Ecol ; 46(11-12): 1047-1058, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33106973

RESUMO

Thousand cankers disease (TCD), is an invasive insect-disease complex caused by the walnut twig beetle, Pityophthorus juglandis, and fungal pathogen, Geosmithia morbida. Semiochemical interruption is a viable option for protecting walnut trees from P. juglandis attack. The goal of this study was to test beetle responses to potential repellent compounds. The results of five, flight-intercept assays are reported. Assays 1-3 tested four compounds at variable release rates: (S)-(-)-verbenone, (R)-(+)-verbenone, racemic chalcogran, and racemic trans-conophthorin. Trapping results indicated that the highest release rate tested for each compound was the most effective in reducing the number of beetles caught. (S)-(-)-Verbenone was the least effective, reducing P. juglandis trap catches by 66%. (R)-(+)-Verbenone reduced the number of P. juglandis by 84%. Neither enantiomer of verbenone performed as well as chalcogran or trans-conophthorin, which both reduced the number of beetles caught by ca. 98%. Following individual assays, the most effective compounds were tested in subtractive-combination assays. Combinations of high release rates for (R)-(+)-verbenone, trans-conophthorin, and two stereoisomers of limonene (tested in a previous study) were tested in two assays. The subtractive-combination assays were inconclusive in that trap catches were similar across all treatments. All combination treatments were highly effective, achieving approximately 99% reduction in the number of beetles caught. Based on the trapping results, commercial availability, and cost of the semiochemicals tested, we conclude that a combination of (R)-(+)-limonene, trans-conophthorin, and (R)-(+)-verbenone constitutes an effective tool for reducing P. juglandis trap catches.


Assuntos
Hypocreales/fisiologia , Juglans/química , Feromônios/metabolismo , Gorgulhos/fisiologia , Animais , Monoterpenos Bicíclicos/química , Monoterpenos Bicíclicos/metabolismo , Feminino , Repelentes de Insetos/metabolismo , Isomerismo , Limoneno/metabolismo , Masculino , Doenças das Plantas/prevenção & controle , Compostos de Espiro/química , Compostos de Espiro/metabolismo , Relação Estrutura-Atividade
3.
J Insect Sci ; 17(3)2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973569

RESUMO

Thousand cankers disease, caused by the invasive bark beetle Pityophthorus juglandis Blackman and an associated fungal pathogen Geosmithia morbida M.Kolarík, E. Freeland, C. Utley, N. Tisserat, currently threatens the health of eastern black walnut (Juglans nigra L.) in North America. Both the beetle and pathogen have expanded beyond their native range via transport of infested walnut wood. Geosmithia morbida can develop in seedlings following inoculation, but the ability of P. juglandis to colonize young, small diameter trees has not been investigated. This study assessed the beetle's colonization behavior on J. nigra nursery trees. Beetles were caged directly onto the stems of walnut seedlings from five nursery sources representing a range of basal stem diameter classes. Seedlings were also exposed to P. juglandis in a limited choice, field-based experiment comparing pheromone-baited and unbaited stems. When beetles were caged directly onto stems, they probed and attempted to colonize seedlings across the range of diameters and across sources tested, including stems as small as 0.5 cm in diameter. In the field experiment, beetles only attempted to colonize seedlings that were baited with a pheromone lure and appeared to prefer (though not statistically significant) the larger diameter trees. Despite several successful penetrations into the phloem, there was no evidence of successful progeny development within the young trees in either experiment. Further investigation is recommended to better elucidate the risk nursery stock poses as a pathway for thousand cankers disease causal organisms.


Assuntos
Interações Hospedeiro-Parasita , Insetos Vetores/fisiologia , Juglans/parasitologia , Gorgulhos/fisiologia , Animais , Ascomicetos/fisiologia , Feminino , Herbivoria , Insetos Vetores/microbiologia , Juglans/microbiologia , Masculino , Doenças das Plantas , Gorgulhos/microbiologia
4.
J Econ Entomol ; 109(1): 213-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26318005

RESUMO

Several North American walnut species (Juglans spp.) are threatened by thousand cankers disease which is caused by the walnut twig beetle (Pityophthorus juglandis Blackman) and its associated fungal plant pathogen, Geosmithia morbida M. Kolarík, E. Freeland, C. Utley and N. Tisserat sp. nov. Spread of this disease may occur via movement of infested black walnut (Juglans nigra L.) wood. This study evaluated the ability of P. juglandis to colonize J. nigra wood previously treated with various phytosanitation methods. Steam-heated and methyl bromide-fumigated J. nigra logs, as well as kiln-dried natural wane J. nigra lumber (with and without bark) were subsequently exposed to P. juglandis colonization pressure in two exposure scenarios. Following a pheromone-mediated, high-pressure scenario in the canopy of infested trees, beetles readily colonized the bark of steam-heated and methyl bromide-fumigated logs, and were also recovered from kiln-dried lumber on which a thin strip of bark was retained. In the simulated lumberyard exposure experiment, during which samples were exposed to lower P. juglandis populations, beetles were again recovered from bark-on steam-heated logs, but were not recovered from kiln-dried bark-on lumber. These data suggest logs and bark-on lumber treated with phytosanitation methods should not be subsequently exposed to P. juglandis populations. Further beetle exclusion efforts for phytosanitized, bark-on walnut wood products transported out of quarantined areas may be necessary to ensure that these products do not serve as a pathway for the spread of P. juglandis and thousand cankers disease.


Assuntos
Controle de Insetos/métodos , Juglans/química , Doenças das Plantas/prevenção & controle , Gorgulhos/fisiologia , Madeira/química , Animais , Fumigação , Temperatura Alta , Hidrocarbonetos Bromados , Casca de Planta/química , Doenças das Plantas/microbiologia , Dinâmica Populacional , Vapor , Gorgulhos/microbiologia
5.
J Econ Entomol ; 114(3): 1180-1188, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33822085

RESUMO

The walnut twig beetle, Pityophthorus juglandis Blackman, the vector of thousand cankers disease (TCD), poses a significant threat to North American walnut (Juglandaceae Juglans) trees. Despite discovery of TCD-related tree mortality over a decade ago, management options are lacking. This study represents the culmination of several years of investigating the chemical ecology of P. juglandis in hopes of developing a semiochemical repellent to disrupt the beetle's host colonization and aggregation behaviors. Numbers of P. juglandis landing on semiochemical-treated Juglans regia L. trees in a commercial walnut orchard were compared based on captures on sticky traps. Two repellent combinations were tested: R-(+)-limonene and trans-conophthorin (LimeCon), and R-(+)-limonene, trans-conophthorin, and R-(+)-verbenone (LCV). Both repellents reduced P. juglandis aggregation (captures) equally; thus, we proceeded with the LimeCon combination to reduce potential treatment cost. Subsequent trials included a 2× dose (Dual) of LimeCon. Both LimeCon and Dual significantly reduced the number of P. juglandis caught compared with the baited control, however, only for the lower of two trap positions. Beetle landings were modeled by trap distance from repellent placement on each tree. Beetle responses to the pheromone lure were surprisingly localized and did not bring the whole tree under attack. LimeCon, LCV, and Dual treatments averaged fewer than a single beetle caught for all trap distances; however, performance of the repellents beyond 150 cm is not clear due to the localized landing response of P. juglandis to pheromone lures. Further testing is required to fully analyze the zone of inhibition of the LimeCon repellent.


Assuntos
Besouros , Juglans , Gorgulhos , Animais , California , Feromônios/farmacologia , Árvores
6.
J Econ Entomol ; 113(6): 2772-2784, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33135731

RESUMO

The walnut twig beetle, Pityophthorus juglandis Blackman, and its associated fungal pathogen that causes thousand cankers disease, currently threaten the viability of walnut trees across much of North America. During a 2011 assessment of seasonal flight patterns of P. juglandis with yellow sticky traps baited with the male-produced aggregation pheromone component, 3-methyl-2-buten-1-ol, dramatically reduced catches were recorded when Tree Tanglefoot adhesive was used to coat the traps. In summer 2011, two trap adhesives were tested for potential repellency against P. juglandis in a field trapping bioassay. SuperQ extracts of volatiles from the most repellent adhesive were analyzed by gas chromatography-mass spectrometry, and limonene and α-pinene were identified as predominant components. In field-based, trapping experiments both enantiomers of limonene at a release rate of ~700 mg/d conferred 91-99% reduction in trap catches of P. juglandis to pheromone-baited traps. (+)- and (‒)-α-Pinene reduced trap catch by 40 and 53%, respectively, at the highest release rate tested. While a combination of R-(+)-limonene and (+)-α-pinene resulted in a 97% reduction in the number of P. juglandis caught, the combination did not consistently result in greater flight trap catch reduction than individual limonene enantiomers. The repellent effect of limonene may be valuable in the development of a semiochemical-based tool for management of P. juglandis and thousand cankers disease.


Assuntos
Besouros , Juglans , Gorgulhos , Animais , Masculino , América do Norte , Feromônios/farmacologia
7.
Insects ; 11(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121509

RESUMO

The walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), vectors the fungus Geosmithia morbida, which has been implicated in thousand cankers disease of walnut. Little is known about the flight behavior of the insect across seasons, or about the variability in its flight patterns with weekly fluctuations in weather. We sampled flying adults weekly over a 142-week period (from 29 August, 2011 to 2 June, 2014) with 12-unit black plastic multiple funnel traps baited with a male-produced aggregation pheromone in California, USA. Up to 5000 beetles were captured per trap per week, although catches in most weeks were less than 100 insects. Trap catches were regressed against terms for precipitation, solar radiation, vapor pressure, air temperature, relative humidity, wind speed, and trap catches in preceding weeks. The number of beetles captured in each of the preceding two weeks explained most variation in a current week's catch. This strong temporal autocorrelation was present in regression models developed for males, females, and both sexes pooled. These models were improved by including two environmental variables. Captures of P. juglandis increased with mean weekly air temperature and decreased with increasing mean minimum relative humidity. The percentage of variation in male, female, or total trap catch explained by the temporal variables and the two environmental variables in these multiple regression models ranged from 72% to 76%. While the flight of this invasive insect will likely be affected by site-specific factors as it spreads to new areas, the strong temporal correlation present in this system may provide a useful starting point for developing flight models for newly invaded areas.

8.
J Econ Entomol ; 112(5): 2493-2496, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31141149

RESUMO

Formulations of entomopathogenic (insect-killing) fungi represent alternatives to synthetic insecticides in the management of forest and shade tree insects. We evaluated bark spray applications of the entomopathogen Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) strain GHA (BotaniGardES), permethrin insecticide (Astro), and water (control) on colonization of black walnut (Juglans nigra L.) (Fagales: Juglandaceae) bolts by the walnut twig beetle (Pityophthorus juglandis Blackman) (Coleoptera: Curculionidae), vector of the fungus that causes thousand cankers disease. Treated bolts were baited with a P. juglandis aggregation pheromone lure and deployed in infested walnut trees. Bark application of permethrin prevented P. juglandis colonization of the phloem. Although treatment of bolts with the B. bassiana suspension did not reduce P. juglandis colonization or short-term emergence relative to the control treatment, it increased the B. bassiana infection rate from 25 to 62% of emerged adults. Results suggest that commercial applications of B. bassiana strain GHA may help augment natural levels of infection by this entomopathogen in the eastern United States, and support continued exploration of entomopathogens for biological control of the walnut twig beetle.


Assuntos
Beauveria , Besouros , Inseticidas , Juglans , Gorgulhos , Animais , Permetrina , Controle Biológico de Vetores , Casca de Planta
9.
Genome Biol Evol ; 9(12): 3312-3327, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186370

RESUMO

Geosmithia morbida is an emerging fungal pathogen which serves as a model for examining the evolutionary processes behind pathogenicity because it is one of two known pathogens within a genus of mostly saprophytic, beetle-associated, fungi. This pathogen causes thousand cankers disease in black walnut trees and is vectored into the host via the walnut twig beetle. Geosmithia morbida was first detected in western United States and currently threatens the timber industry concentrated in eastern United States. We sequenced the genomes of G. morbida in a previous study and two nonpathogenic Geosmithia species in this work and compared these species to other fungal pathogens and nonpathogens to identify genes under positive selection in G. morbida that may be associated with pathogenicity. Geosmithia morbida possesses one of the smallest genomes among the fungal species observed in this study, and one of the smallest fungal pathogen genomes to date. The enzymatic profile in this pathogen is very similar to its nonpathogenic relatives. Our findings indicate that genome reduction or retention of a smaller genome may be an important adaptative force during the evolution of a specialized lifestyle in fungal species that occupy a specificniche, such as beetle vectored tree pathogens. We also present potential genes under selection in G. morbida that could be important for adaptation to a pathogenic lifestyle.


Assuntos
Besouros/microbiologia , Genoma Fúngico , Interações Hospedeiro-Patógeno , Hypocreales/genética , Doenças das Plantas/microbiologia , Animais , Genômica , Hypocreales/classificação , Hypocreales/patogenicidade , Proteínas de Insetos/genética , Juglans/microbiologia , Filogenia , Padrões de Referência , Análise de Sequência de DNA
10.
Environ Entomol ; 46(3): 633-641, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334300

RESUMO

The walnut twig beetle, Pityophthorus juglandis Blackman, and associated fungus Geosmithia morbida Kolarík, Freeland, Utley, & Tisserat constitute the insect-fungal complex that causes thousand cankers disease in walnut, Juglans spp., and wingnut, Pterocarya spp. Thousand cankers disease is responsible for the decline of Juglans species throughout the western United States and more recently, the eastern United States and northern Italy. We examined the flight capacity of P. juglandis over 24-h trials on a flight mill in the laboratory. The maximum total flight distance observed was ∼3.6 km in 24 h; however, the mean and median distances flown by beetles that initiated flight were ∼372 m and ∼158 m, respectively. Beetles flew for 34 min on average within a 24-h flight trial. Male and female flight capacities were similar, even though males were larger than females (0.64 vs. 0.57 mm pronotal width). Age postemergence had no effect on flight distance, flight time, or mean flight velocity. The propensity to fly, however, decreased with age. We integrated results of flight distance with propensity to fly as beetles aged in a Monte Carlo simulation to estimate the maximum dispersal capacity over 5 d, assuming no mortality. Only 1% of the insects would be expected to fly >2 km, whereas one-third of the insects were estimated to fly <100 m. These results suggest that nascent establishments remain relatively localized without anthropogenic transport or wind-aided dispersal, which has implications for management and sampling of this hardwood pest.


Assuntos
Distribuição Animal , Voo Animal , Gorgulhos/fisiologia , Fatores Etários , Animais , Feminino , Masculino , Distribuição Aleatória
11.
Environ Entomol ; 46(4): 967-977, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28510721

RESUMO

Winter survivorship of insects is determined by a combination of physiological, behavioral, and microhabitat characteristics. We characterized the cold tolerance of the walnut twig beetle, Pityophthorus juglandis Blackman, a domestic alien invasive bark beetle that vectors a phytopathogenic fungus. The beetle and fungus cause thousand cankers disease in species of Juglans and Pterocarya. The disease is spreading in the United States of America (USA) and Italy. Contact thermocouple thermometry was used to measure the supercooling points of adults and larvae and lower lethal temperatures of adults from a population from northern California. Supercooling points ranged from -12.2 °C to - 25.0 °C for adults and -13.6 °C to - 23.5 °C for larvae; lower lethal temperatures of adults ranged from -14 °C to - 23 °C. We found seasonal changes in adult supercooling points in fall, winter, and spring. The supercooling point for males was 0.5 °C colder than for females over all months and 1 °C colder in the winter than in other seasons. The cold-tolerance strategy shifted in P. juglandis adults from freeze intolerance (December 2013 and January 2014) to partial freeze tolerance (February 2014). An intermediate level of cold tolerance with a plastic response to cold partially explains survival of P. juglandis outside of its native range in the southwestern USA. In addition, we characterized the relationship between minimum air temperatures and minimum phloem temperatures in two Juglans spp. in northern California and Colorado and characterized portions of the native geographic range of eastern black walnut, J. nigra L., that may be too cold currently for this insect to persist.


Assuntos
Temperatura Baixa , Estresse Fisiológico/fisiologia , Gorgulhos/fisiologia , Animais , California , Feminino , Congelamento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Estações do Ano , Fatores Sexuais , Gorgulhos/crescimento & desenvolvimento
12.
Environ Entomol ; 44(6): 1455-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26314028

RESUMO

Thousand cankers disease (TCD) is a new disease of black walnut (Juglans nigra L.) in the eastern United States. The disease is caused by the interaction of the aggressive bark beetle Pityophthorus juglandis Blackman and the canker-forming fungus, Geosmithia morbida M. Kolarik, E. Freeland, C. Utley & Tisserat, carried by the beetle. Other insects also colonize TCD-symptomatic trees and may also carry pathogens. A trap tree survey was conducted in Indiana and Missouri to characterize the assemblage of ambrosia beetles, bark beetles, and other weevils attracted to the main stems and crowns of stressed black walnut. More than 100 trees were girdled and treated with glyphosate (Riverdale Razor Pro, Burr Ridge, Illinois) at 27 locations. Nearly 17,000 insects were collected from logs harvested from girdled walnut trees. These insects represented 15 ambrosia beetle, four bark beetle, and seven other weevil species. The most abundant species included Xyleborinus saxeseni Ratzburg, Xylosandrus crassiusculus Motschulsky, Xylosandrus germanus Blandford, Xyleborus affinis Eichhoff, and Stenomimus pallidus Boheman. These species differed in their association with the stems or crowns of stressed trees. Multiple species of insects were collected from individual trees and likely colonized tissues near each other. At least three of the abundant species found (S. pallidus, X. crassiusculus, and X. germanus) are known to carry propagules of canker-causing fungi of black walnut. In summary, a large number of ambrosia beetles, bark beetles, and other weevils are attracted to stressed walnut trees in Indiana and Missouri. Several of these species have the potential to introduce walnut canker pathogens during colonization.


Assuntos
Insetos Vetores , Juglans/fisiologia , Estresse Fisiológico , Gorgulhos , Animais , Glicina/análogos & derivados , Hypocreales , Indiana , Juglans/microbiologia , Missouri , Doenças das Plantas/microbiologia , Glifosato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa