Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37374837

RESUMO

Three-dimensional (3D) integration based on through-silicon-via (TSV) technology provides a solution to the miniaturization of electronic systems. In this paper, novel integrated passive devices (IPDs) including capacitor, inductor, and bandpass filter are designed by employing TSV structures. For lower manufacturing costs, polyimide (PI) liners are used in the TSVs. The influences of structural parameters of TSVs on the electrical performance of the TSV-based capacitor and inductor are individually evaluated. Moreover, with the topologies of capacitor and inductor elements, a compact third-order Butterworth bandpass filter with a central frequency of 2.4 GHz is developed, and the footprint is only 0.814 mm × 0.444 mm. The simulated 3-dB bandwidth of the filter is 410 MHz, and the fraction bandwidth (FBW) is 17%. Besides, the in-band insertion loss is less than 2.63 dB, and the return loss in the passband is better than 11.4 dB, showing good RF performance. Furthermore, as the filter is fully formed by identical TSVs, it not only features a simple architecture and low cost, but also provides a promising idea for facilitating the system integration and layout camouflaging of radio frequency (RF) devices.

2.
Micromachines (Basel) ; 13(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35888964

RESUMO

High aspect ratio (HAR) through-silicon vias (TSVs) are in urgent need to achieve smaller keep-out zones (KOZs) and higher integration density for the miniaturization of high-performance three-dimensional (3D) integration of integrated circuits (IC), micro-electro-mechanical systems (MEMS), and other devices. In this study, HAR TSVs with a diameter of 11 µm and an aspect ratio of 10:1 are successfully fabricated in a low-cost process flow. Conformal polyimide (PI) liners are deposited using a vacuum-assisted spin coating technique, and the effects of spin coating time and speed on the deposition results are discussed. Then, continuous Cu seed layers are fabricated by sequential sputtering and ultrasound-assisted electroless plating. Additionally, void-free and seamless Cu conductors are formed by electroplating. Moreover, a semi-additive method is used to fabricate the redistribution layers (RDLs) on the insulating layers of photosensitive PI (PSPI). Notably, a plasma bombardment process is introduced to remove residual PSPI in the contact windows between RDLs and central pillars. Results show that the resistance of a single TSV from a daisy chain of 144 TSVs with density of 2000/mm2 is about 28 mΩ. Additionally, the S-parameters of a single TSV are obtained using L-2L de-embedding technology, and the experimental and simulated results agree well. The proposed low-cost fabrication technologies and the related electrical characterization of PI-TSVs are significant for the application of HAR TSVs in modern heterogeneous integration systems.

3.
Microsyst Nanoeng ; 3: 17002, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31057857

RESUMO

Interposers with through-silicon vias (TSVs) play a key role in the three-dimensional integration and packaging of integrated circuits and microelectromechanical systems. In the current practice of fabricating interposers, solder balls are placed next to the vias; however, this approach requires a large foot print for the input/output (I/O) connections. Therefore, in this study, we investigate the possibility of placing the solder balls directly on top of the vias, thereby enabling a smaller pitch between the solder balls and an increased density of the I/O connections. To reach this goal, inkjet printing (that is, piezo and super inkjet) was used to successfully fill and planarize hollow metal TSVs with a dielectric polymer. The under bump metallization (UBM) pads were also successfully printed with inkjet technology on top of the polymer-filled vias, using either Ag or Au inks. The reliability of the TSV interposers was investigated by a temperature cycling stress test (-40 °C to +125 °C). The stress test showed no impact on DC resistance of the TSVs; however, shrinkage and delamination of the polymer was observed, along with some micro-cracks in the UBM pads. For proof of concept, SnAgCu-based solder balls were jetted on the UBM pads.

4.
Nanoscale Res Lett ; 9(1): 541, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25324705

RESUMO

This paper presents one wafer level packaging approach of quartz resonator based on through-silicon via (TSV) interposer with metal or polymer bonding sealing of frequency components. The proposed silicon-based package of quartz resonator adopts several three-dimensional (3D) core technologies, such as Cu TSVs, sealing bonding, and wafer thinning. It is different from conventional quartz resonator using ceramic-based package. With evaluation of mechanical structure design and package performances, this quartz resonator with advanced silicon-based package shows great manufacturability and excellent performance to replace traditional metal lid with ceramic-based interposer fabrication approach.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa