Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Annu Rev Immunol ; 35: 85-118, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28226225

RESUMO

Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells. The importance of thymic epithelial cells (TECs) is evidenced by clear links between their dysfunction and multiple diseases where autoimmunity and immunodeficiency are major components. Consequently, TECs are an attractive target for cell therapies to restore effective immune system function. The pathways and molecular regulators that control TEC development are becoming clearer, as are their influences on particular stages of T cell development. Here, we review both historical and the most recent advances in our understanding of the cellular and molecular mechanisms controlling TEC development, function, dysfunction, and regeneration.


Assuntos
Células Epiteliais/metabolismo , Linfócitos T/fisiologia , Timo/patologia , Animais , Autoimunidade , Diferenciação Celular , Células Epiteliais/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Timo/imunologia , Fatores de Transcrição/metabolismo , Proteína AIRE
2.
Immunity ; 48(6): 1258-1270.e6, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29884461

RESUMO

Thymus development is critical to the adaptive immune system, yet a comprehensive transcriptional framework capturing thymus organogenesis at single-cell resolution is still needed. We applied single-cell RNA sequencing (RNA-seq) to capture 8 days of thymus development, perturbations of T cell receptor rearrangement, and in vitro organ cultures, producing profiles of 24,279 cells. We resolved transcriptional heterogeneity of developing lymphocytes, and genetic perturbation confirmed T cell identity of conventional and non-conventional lymphocytes. We characterized maturation dynamics of thymic epithelial cells in vivo, classified cell maturation state in a thymic organ culture, and revealed the intrinsic capacity of thymic epithelium to preserve transcriptional regularity despite exposure to exogenous retinoic acid. Finally, by integrating the cell atlas with human genome-wide association study (GWAS) data and autoimmune-disease-related genes, we implicated embryonic thymus-resident cells as possible participants in autoimmune disease etiologies. This resource provides a single-cell transcriptional framework for biological discovery and molecular analysis of thymus organogenesis.


Assuntos
Diferenciação Celular/imunologia , Análise de Sequência de RNA/métodos , Linfócitos T/imunologia , Timo/embriologia , Animais , Doenças Autoimunes/imunologia , Embrião de Mamíferos , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Organogênese/imunologia , Linfócitos T/citologia , Timo/citologia
3.
Eur J Immunol ; 53(12): e2350725, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37724048

RESUMO

In mammals, T-cell development depends on the activity of the Foxn1 transcription factor in the thymic epithelium; mutations in the vertebrate-specific Foxn1 gene are associated with profound T-cell lymphopenia and fatal immunodeficiency. Here, we examined the extent of T-cell development in teleosts lacking a functional foxn1 gene. In zebrafish carrying a deleterious internal deletion of foxn1, reduced but robust lymphopoietic activity is maintained in the mutant thymus. Moreover, pseudogenization or loss of foxn1 in the genomes of deep-sea anglerfishes is independent of the presence or absence of the canonical signatures of the T-cell lineage. Thus, in contrast to the situation in mammals, the teleost thymus can support foxn1-independent lymphopoiesis, most likely through the activity of the Foxn4, an ancient metazoan paralog of Foxn1. Our results imply that during the early stages of vertebrate evolution, genetic control of thymopoiesis was functionally redundant and thus robust; in mammals, the genetic network was reorganized to become uniquely dependent on the FOXN1 transcription factor.


Assuntos
Redes Reguladoras de Genes , Peixe-Zebra , Camundongos , Animais , Camundongos Transgênicos , Peixe-Zebra/genética , Linfócitos T , Timo , Fatores de Transcrição/genética , Fatores de Transcrição Forkhead/genética , Células Epiteliais , Mamíferos/genética , Proteínas de Peixe-Zebra/genética
4.
Immunol Rev ; 271(1): 23-37, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27088905

RESUMO

The thymus is a primary lymphoid tissue that supports the generation of αßT cells. In this review, we describe the processes that give rise to the thymus medulla, a site that nurtures self-tolerant T-cell generation following positive selection events that take place in the cortex. To summarize the developmental pathways that generate medullary thymic epithelial cells (mTEC) from their immature progenitors, we describe work on both the initial emergence of the medulla during embryogenesis, and the maintenance of the medulla during postnatal stages. We also investigate the varying roles that receptors belonging to the tumor necrosis factor receptor superfamily have on thymus medulla development and formation, and highlight the impact that T-cell development has on thymus medulla formation. Finally, we examine the evidence that the thymic medulla plays an important role during the intrathymic generation of distinct αßT-cell subtypes. Collectively, these studies provide new insight into the development and functional importance of medullary microenvironments during self-tolerant T-cell production in the thymus.


Assuntos
Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Sistema Imunitário/embriologia , Linfócitos T/fisiologia , Timo/fisiologia , Animais , Microambiente Celular , Humanos , Sistema Imunitário/crescimento & desenvolvimento , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Tolerância a Antígenos Próprios , Timo/anatomia & histologia , Fatores de Necrose Tumoral/metabolismo
5.
Eur J Immunol ; 48(5): 844-854, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29285761

RESUMO

In the thymus, medullary thymic epithelial cells (mTEC) determine the fate of newly selected CD4+ and CD8+ single positive (SP) thymocytes. For example, mTEC expression of Aire controls intrathymic self-antigen availability for negative selection. Interestingly, alterations in both Foxp3+ Regulatory T-cells (T-Reg) and conventional SP thymocytes in Aire-/- mice suggest additional, yet poorly understood, roles for Aire during intrathymic T-cell development. To examine this, we analysed thymocytes from Aire-/- mice using Rag2GFP and Foxp3 expression, and a recently described CD69/MHCI subset definition of post-selection CD4+ conventional thymocytes. We show that while Aire is dispensable for de novo generation of conventional αßT-cells, it plays a key role in controlling the intrathymic T-Reg pool. Surprisingly, a decline in intrathymic T-Reg in Aire-/- mice maps to a reduction in mature recirculating Rag2GFP- T-Reg that express CCR6 and re-enter the thymus from the periphery. Furthermore, we show mTEC expression of the CCR6 ligand CCL20 is reduced in Aire-/- mice, and that CCR6 is required for T-Reg recirculation back to the thymus. Collectively, our study re-defines requirements for late stage intrathymic αßT-cell development, and demonstrates that Aire controls a CCR6-CCL20 axis that determines the developmental makeup of the intrathymic T-Reg pool.


Assuntos
Células Epiteliais/citologia , Linfócitos T Reguladores/imunologia , Timócitos/citologia , Timo/citologia , Fatores de Transcrição/imunologia , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Diferenciação Celular/imunologia , Quimiocina CCL20/biossíntese , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/biossíntese , Tolerância Imunológica/imunologia , Lectinas Tipo C/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Timócitos/imunologia , Fatores de Transcrição/genética , Proteína AIRE
6.
Histochem Cell Biol ; 152(6): 397-413, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31552487

RESUMO

The mechanisms that determine the commitment of thymic epithelial precursors to the two major thymic epithelial cell lineages, cTECs and mTECs, remain unknown. Here we show that FoxN1 nu mutation, which abolishes thymic epithelium differentiation, results in the formation of a tubular branched structure according to a typical branching morphogenesis and tubulogenesis developmental pattern. In the presence of FoxN1, in alymphoid NSG and fetal Ikaros-/- thymi, there is no lumen formation and only partial apical differentiation. This initiates cortex-medulla differentiation inducing expression of medullary genes in the apically differentiating cells and of cortical genes in the non-apically differentiating cells, which will definitely differentiate in wt and postnatal Ikaros-/- mice. Therefore, the thymus development is based on a branching morphogenesis and tubulogenesis developmental pattern: FoxN1 expression in the thymic primordium inhibits tubulogenesis and induces the expression of genes involved in TEC differentiation, which culminates with the expression of functional cell markers, i.e., MHCII, CD80, Aire in both postnatal Ikaros-/- and WT thymi after arrival of lymphoid progenitor cells.


Assuntos
Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Timo/metabolismo , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead/análise , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Morfogênese , Timo/química , Timo/citologia
7.
Eur J Immunol ; 46(4): 857-62, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26806881

RESUMO

Thymic epithelial cells (TECs) provide essential signals for αßT-cell development, and medullary TECs (mTECs) control T-cell tolerance through both negative selection and Foxp3(+) regulatory T (Treg) cell development. Although heterogeneity within the mTEC compartment is well studied, the molecular regulators of specific stages of mTEC development are still poorly understood. Given the importance of the RANK-RANKL axis in thymus medulla formation, we have used RANK Venus reporter mice to analyze the ontogeny of RANK(+) TECs during development and correlated RANK expression with mTEC stem cells defined by SSEA-1. In addition, we have investigated how requirements for the key regulators Foxn1 and Relb map to specific stages of mTEC development. Here, we show SSEA-1(+) mTEC stem cells emerge prior to RANK expression and are present in both nude and Relb(-/-) mice, providing direct evidence that mTEC lineage specification occurs independently of Foxn1 and Relb. In contrast, we show that Relb is necessary for the effective production of downstream RANK(+) mTEC progenitors. Collectively, our work defines stage-specific requirements for critical TEC regulators during medulla development, including the timing of Relb dependency, and provides new information on mechanisms controlling mTEC specification.


Assuntos
Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Células-Tronco/citologia , Linfócitos T Reguladores/citologia , Timo/embriologia , Fator de Transcrição RelB/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula/imunologia , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/metabolismo , Antígenos CD15/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T Reguladores/imunologia , Timo/citologia , Fator de Transcrição RelB/genética
8.
Eur J Immunol ; 45(5): 1535-47, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25627671

RESUMO

The thymus is the organ devoted to T-cell production. The thymus undergoes multiple rounds of atrophy and redevelopment before degenerating with age in a process known as involution. This process is poorly understood, despite the influence the phenomenon has on peripheral T-cell numbers. Here we have investigated the FVB/N mouse strain, which displays premature thymic involution. We find multiple architectural and cellular features that precede thymic involution, including disruption of the epithelial-endothelial relationship and a progressive loss of pro-T cells. The architectural features, reminiscent of the human thymus, are intrinsic to the nonhematopoietic compartment and are neither necessary nor sufficient for thymic involution. By contrast, the loss of pro-T cells is intrinsic to the hematopoietic compartment, and is sufficient to drive premature involution. These results identify pro-T-cell loss as the main driver of premature thymic involution, and highlight the plasticity of the thymic stroma, capable of maintaining function across diverse interstrain architectures.


Assuntos
Timo/imunologia , Timo/patologia , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Atrofia/imunologia , Atrofia/patologia , Diferenciação Celular/imunologia , Endotélio Vascular/patologia , Células Epiteliais/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Especificidade da Espécie , Células Estromais/patologia , Linfócitos T/imunologia , Linfócitos T/patologia , Timo/irrigação sanguínea
9.
J Autoimmun ; 68: 86-97, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26778835

RESUMO

Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas Hedgehog/metabolismo , Timo/citologia , Timo/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo , Timo/imunologia
10.
J Autoimmun ; 63: 13-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26143957

RESUMO

The thymic medulla is critical for the enforcement of central tolerance. In addition to deletion of auto-reactive T-cells, the thymic medulla supports the maturation of heterogeneous natural αßT-cells linked to tolerance mechanisms. Natural IL-17-secreting CD4(+)αßT-cells (nTh17) represent recently described natural αßT-cells that mature and undergo functional priming intrathymically. Despite a proposed potential to impact upon either protective or pathological inflammatory responses, the intrathymic mechanisms regulating the balance of nTh17 development are unclear. Here we compare the development of distinct natural αßT-cells in the thymus. We reveal that thymic stromal MHC class II expression and RelB-dependent medullary thymic epithelial cells (mTEC), including Aire(+) mTEC, are an essential requirement for nTh17 development. nTh17 demonstrate a partial, non-redundant requirement for both ICOS-ligand and CD80/86 costimulation, with a dispensable role for CD80/86 expression by thymic epithelial cells. Although mTEC constitutively expressed inducible nitric oxide synthase (iNOS), a critical negative regulator of conventional Th17 differentiation, iNOS was not essential to constrain thymic nTh17. These findings highlight the critical role of the thymic medulla in the differential regulation of novel natural αßT-cell subsets, and reveal additional layers of thymic medullary regulation of T-cell driven autoimmunity and inflammation.


Assuntos
Microambiente Celular/imunologia , Células Th17/imunologia , Células Th17/metabolismo , Timo/metabolismo , Animais , Autoimunidade/imunologia , Diferenciação Celular , Humanos , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Timo/embriologia , Timo/imunologia
11.
Eur J Immunol ; 43(7): 1769-78, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23589212

RESUMO

The establishment and maintenance of central tolerance depends to a large extent on the ability of medullary thymic epithelial cells to express a variety of tissue-restricted antigens, the so-called promiscuous gene expression (pGE). Autoimmune regulator (Aire) is to date the best characterised transcriptional regulator known to at least partially coordinate pGE. There is accruing evidence that the expression of Aire-dependent and -independent genes is modulated by higher order chromatin configuration, epigenetic modifications and post-transcriptional control. Given the involvement of microRNAs (miRNAs) as potent post-transcriptional modulators of gene expression, we investigated their role in the regulation of pGE in purified mouse and human thymic epithelial cells (TECs). Microarray profiling of TEC subpopulations revealed evolutionarily conserved cell type and differentiation-specific miRNA signatures with a subset of miRNAs being significantly upregulated during terminal medullary thymic epithelial cell differentiation. The differential regulation of this subset of miRNAs was correlated with Aire expression and some of these miRNAs were misexpressed in the Aire knockout thymus. In turn, the specific absence of miRNAs in TECs resulted in a progressive reduction of Aire expression and pGE, affecting both Aire-dependent and -independent genes. In contrast, the absence of miR-29a only affected the Aire-dependent gene pool. These findings reveal a mutual interdependence of miRNA and Aire.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica/imunologia , MicroRNAs/genética , Tolerância a Antígenos Próprios/genética , Fatores de Transcrição/metabolismo , Animais , Separação Celular , Células Epiteliais/imunologia , Regulação da Expressão Gênica/genética , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância a Antígenos Próprios/imunologia , Timo/imunologia , Fatores de Transcrição/imunologia , Proteína AIRE
12.
Front Endocrinol (Lausanne) ; 12: 582614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122327

RESUMO

We have used the four core genotypes (FCG) mouse model, which allows a distinction between effects of gonadal secretions and chromosomal complement, to determine when sex differences in the immune system first appear and what influences their development. Using splenic T cell number as a measure that could be applied to neonates with as yet immature immune responses, we found no differences among the four genotypes at postnatal day 1, but by day 7, clear sex differences were observed. These sex differences were unexpectedly independent of chromosomal complement and similar in degree to gonadectomized FCG adults: both neonatal and gonadectomized adult females (XX and XY) showed 2-fold the number of CD4+ and 7-fold the number of CD8+ T cells versus their male (XX and XY) counterparts. Appearance of this long-lived sex difference between days 1 and 7 suggested a role for the male-specific perinatal surge of testicular testosterone. Interference with the testosterone surge significantly de-masculinized the male CD4+, but not CD8+ splenic profile. Treatment of neonates demonstrated elevated testosterone limited mature cell egress from the thymus, whereas estradiol reduced splenic T cell seeding in females. Neonatal male splenic epithelium/stroma expressed aromatase mRNA, suggesting capacity for splenic conversion of perinatal testosterone into estradiol in males, which, similar to administration of estradiol in females, would result in reduced splenic T cell seeding. These sex steroid effects affected both CD4+ and CD8+ cells and yet interference with the testosterone surge only significantly de-masculinized the splenic content of CD4+ cells. For CD8+ cells, male cells in the thymus were also found to express one third the density of sphingosine-1-phosphate thymic egress receptors per cell compared to female, a male characteristic most likely an indirect result of Sry expression. Interestingly, the data also support a previously unrecognized role for non-gonadal estradiol in the promotion of intra-thymic cell proliferation in neonates of both sexes. Microarray analysis suggested the thymic epithelium/stroma as the source of this hormone. We conclude that some immune sex differences appear long before puberty and more than one mechanism contributes to differential numbers and distribution of T cells.


Assuntos
Transtornos do Desenvolvimento Sexual/imunologia , Fenômenos do Sistema Imunitário/genética , Sistema Imunitário/fisiologia , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/patologia , Feminino , Estudos de Associação Genética , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Caracteres Sexuais , Proteína da Região Y Determinante do Sexo/genética , Maturidade Sexual/genética , Maturidade Sexual/imunologia
13.
Front Immunol ; 8: 1511, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170668

RESUMO

Immunization with myelin components can elicit experimental autoimmune encephalomyelitis (EAE). EAE susceptibility varies between mouse strains, depending on the antigen employed. BL/6 mice are largely resistant to EAE induction with proteolipid protein (PLP), probably a reflection of antigen-specific tolerance. However, the extent and mechanism(s) of tolerance to PLP remain unclear. Here, we identified three PLP epitopes in PLP-deficient BL/6 mice. PLP-sufficient mice did not respond against two of these, whereas tolerance was "leaky" for an epitope with weak predicted MHCII binding, and only this epitope was encephalitogenic. In TCR transgenic mice, the "EAE-susceptibility-associated" epitope was "ignored" by specific CD4 T cells, whereas the "resistance-associated" epitope induced clonal deletion and Treg induction in the thymus. Central tolerance was autoimmune regulator dependent and required expression and presentation of PLP by thymic epithelial cells (TECs). TEC-specific ablation of PLP revealed that peripheral tolerance, mediated by dendritic cells through recessive tolerance mechanisms (deletion and anergy), could largely compensate for a lack of central tolerance. However, adoptive EAE was exacerbated in mice lacking PLP in TECs, pointing toward a non-redundant role of the thymus in dominant tolerance to PLP. Our findings reveal multiple layers of tolerance to a central nervous system autoantigen that vary among epitopes and thereby specify disease susceptibility. Understanding how different modalities of tolerance apply to distinct T cell epitopes of a target in autoimmunity has implications for antigen-specific strategies to therapeutically interfere with unwanted immune reactions against self.

14.
Cell Rep ; 17(2): 448-457, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27705793

RESUMO

Adult tissue-specific stem cells (SCs) mediate tissue homeostasis and regeneration and can give rise to all lineages in the corresponding tissue, similar to the early progenitors that generate organs in the first place. However, the developmental origins of adult SCs are largely unknown. We recently identified thymosphere-forming stem cells (TSFCs) in the adult mouse thymus, which display genuine stemness features and can generate the two major thymic epithelial cell lineages. Here, we show that embryonic TSFCs possess stemness features but differ from adult TSFCs in surface marker profile. Our findings support the model of a continuous thymic SC lineage that is maintained throughout ontogeny. TGF-ß signaling differentially affects embryonic versus adult thymosphere formation, suggesting that thymic epithelial SC potency depends on both developmental stage and environmental signals. Collectively, our findings suggest that embryonic TSFCs contribute to an adult SC pool and that TSFC plasticity is controlled by TGF-ß signaling.


Assuntos
Células-Tronco Embrionárias/citologia , Células Epiteliais/citologia , Timo/citologia , Fator de Crescimento Transformador beta/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Células-Tronco Embrionárias/metabolismo , Células Epiteliais/metabolismo , Camundongos , Regeneração/genética , Transdução de Sinais , Timo/crescimento & desenvolvimento
15.
Front Immunol ; 6: 333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167166

RESUMO

Numerous studies emphasize the relevance of thymocyte-thymic epithelial cell (TECs) interactions for the functional maturation of intrathymic T lymphocytes. The tyrosine kinase receptors, Ephs (erythropoietin-producing hepatocyte kinases) and their ligands, ephrins (Eph receptor interaction proteins), are molecules known to be involved in the regulation of numerous biological systems in which cell-to-cell interactions are particularly relevant. In the last years, we and other authors have demonstrated the importance of these molecules in the thymic functions and the T-cell development. In the present report, we review data on the effects of Ephs and ephrins in the functional maturation of both thymic epithelial microenvironment and thymocyte maturation as well as on their role in the lymphoid progenitor recruitment into the thymus.

16.
Oncotarget ; 6(16): 13978-93, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26101855

RESUMO

Thymoma is the most commonly identified cancer in the anterior mediastinum. To date, the causal mechanism that drives thymoma progression is not clear. Here, we generated K5-∆N64Ctnnb1/ERT2 transgenic mice, which express an N-terminal deletion mutant of ß-catenin fused to a mutated ligand-binding domain of estrogen receptor (ERT2) under the control of the bovine cytokeratin 5 (K5) promoter. The transgenic mouse lines named Tg1 and Tg4 were characterized. Forced expression of ∆N64Ctnnb1/ERT2 in the Tg1 and Tg4 mice developed small thymoma lesions in response to tamoxifen treatment. In the absence of tamoxifen, the Tg1 mice exhibited leaky activation of ß-catenin, which activated the TOP-Gal transgene and Wnt/ß-catenin-targeted genes. As the Tg1 mice aged in the absence of tamoxifen, manifest thymomas were found at 10-12 months. Interestingly, we detected loss of AIRE and increase of p63 in the thymomas of Tg1 mice, similar to that observed in human thymomas. Moreover, the ß5t protease subunit, which was reported as a differential marker for human type B3 thymoma, was expressed in the Tg1 thymomas. Thus, the Tg1 mice generated in this study accurately mimic the characteristics of human thymomas and may serve as a model for understanding thymoma pathogenesis.


Assuntos
Timoma/metabolismo , Timoma/patologia , beta Catenina/metabolismo , Animais , Bovinos , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamoxifeno/farmacologia , Timoma/tratamento farmacológico , Timoma/genética , Via de Sinalização Wnt , beta Catenina/genética
17.
Immunobiology ; 219(8): 644-52, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24768153

RESUMO

The Wnt/beta-catenin signaling pathway plays an important role in the commitment and development of thymic epithelial precursors. Here we document similarities of thymic epithelial development during embryogenesis in human and mouse. We stained for thymic epithelial surface markers (EpCAM1, Ly51, K8) and ligand/receptor pair (Wnt4, Fz4). Our results confirm the relevance of using murine test systems to model human embryonic thymic epithelial cell development. We have efficiently transduced murine embryonic epithelial cells using mock (GFP) and Wnt/beta-catenin-inhibiting (ICAT-encoding) recombinant adenoviral vectors. The effect of Wnt4 was assayed in the form of Wnt4-containing supernatant. Gene expressional changes were assessed by Q-PCR and also morphology using conventional and confocal fluorescent microscopy. Functional aberration caused by ICAT was assessed through evaluation of thymocyte maturation. Our results demonstrate that ICAT and Wnt4 have reciprocal effects during embryonic thymic epithelial cell development. While Wnt4 is capable of increasing the expression level of characteristic intracellular (FoxN1), surface (MHCII) and secreted (IL7) molecules, Wnt/beta-catenin inhibition through ICAT can moderately decrease their expression. Morphological changes induced by ICAT resulted in the development of hollow, inflated thymic lobes with reduced epithelial cell numbers. The ICAT-treated thymic lobes also showed significant impairment in supporting thymocyte development and maturation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Epitélio/patologia , Proteínas Repressoras/metabolismo , Timócitos/fisiologia , Timo/patologia , Proteína Wnt4/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular/genética , Células Cultivadas , Técnicas de Cultura Embrionária , Epitélio/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Interleucina-7/genética , Interleucina-7/metabolismo , Camundongos , Camundongos Endogâmicos , Proteínas Repressoras/genética , Timo/imunologia , Transgenes/genética , Via de Sinalização Wnt/genética , Proteína Wnt4/genética , beta Catenina/metabolismo
18.
Autophagy ; 9(6): 931-2, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23548947

RESUMO

During development in the thymus, each T lymphocyte is equipped with one, essentially unique, T cell receptor (TCR)-specificity. Due to its random nature, this process inevitably also leads to the emergence of potentially dangerous T lymphocytes that may recognize 'self.' Nevertheless, autoimmune tissue destruction, the cause of diseases such as multiple sclerosis and diabetes, is the exception rather than the rule. This state of immunological self-tolerance is to a large degree based upon a process called 'negative selection': prior to joining the circulating lymphocyte pool, immature T cells test their receptor on self-antigens within the thymic microenvironment, and TCR engagement at this immature stage elicits an apoptotic suicide program. We now find evidence that macroautophagy supports the tolerogenic presentation of self-antigens in the thymus.


Assuntos
Autofagia/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Células Epiteliais/citologia , Células Epiteliais/imunologia , Tolerância Imunológica/imunologia , Timo/citologia , Animais , Autoantígenos/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos , Camundongos Nus , Modelos Biológicos , Fagossomos/metabolismo
19.
Artigo em Chinês | WPRIM | ID: wpr-674541

RESUMO

Cultivation of murine thymic epithelium has been established.Murine thymic epi-thelial cultural supernatant showed activity increasing both spontaneous ~3H-TdR inco-rporation and ConA-stimulated proliferation of thymocytes by the exponent of 1.5-2at dilution 1:8 to 1:32,the peak of the activity was present at 10-20 or 15 days ofcultivation.However,the thymic epithelial supernatant from cultures at 6-7 daysshowed activity suppressing both proliferations of thymocytes at dilution 1:8-1:16.Theresult showed thymic epithelial supernatant had no 1L-2 activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa