Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 32: 411-439, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501445

RESUMO

Cell-competitive interactions are widespread in nature and determine the outcome of a vast variety of biological processes. A particular class of competitive interactions takes place when alterations in intrinsic cellular properties are sensed nonautonomously by comparison between neighboring cells, resulting in the selective elimination of one cell population. This type of cell competition was first described four decades ago in developing epithelia of Drosophila. In the last 15 years, further molecular and cellular analyses have provided essential knowledge about the mechanisms, universality, and physiological relevance of cell competition. The two main phenomena triggering cell competition are alterations in cellular metabolic status and alterations in epithelial apico-basal polarity, while other reported pathways are less characterized. Cell competition plays essential roles in quality control, homeostasis, and repair of developing and adult tissues, and depending on the context, it may function as a tumor-suppressing or tumor-promoting mechanism.


Assuntos
Células/metabolismo , Animais , Doença , Saúde , Humanos , Modelos Biológicos , Transdução de Sinais
2.
J Artif Organs ; 25(1): 50-58, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34160717

RESUMO

A major concern in the clinical application of cell therapy is the manufacturing cost of cell products, which mainly depends on quality control. The mycoplasma test, an important biological test in cell therapy, takes several weeks to detect a microorganism and is extremely expensive. Furthermore, the manual detection of mycoplasma from images requires high-level expertise. We hypothesized that a mycoplasma identification program using a convolutional neural network could reduce the test time and improve sensitivity. To this end, we developed a program comprising three parts (mycoplasma detection, prediction, and cell counting) that allows users to evaluate the sample and verify infected/non-infected cells identified by the program. In experiments conducted, stained DNA images of positive and negative control using mycoplasma-infected and non-infected Vero cells, respectively, were used as training data, and the program results were compared with those of conventional methods, such as manual counting based on visual observation. The minimum detectable mycoplasma contaminations for manual counting and the proposed program were 10 and 5 CFU (colony-forming unit), respectively, and the test time for manual counting was 20 times that for the proposed program. These results suggest that the proposed system can realize a low-cost and streamlined manufacturing process for cellular products in cell-based research and clinical applications.


Assuntos
Aprendizado Profundo , Mycoplasma , Animais , Chlorocebus aethiops , Mycoplasma/genética , Células Vero
3.
Tissue Eng Part B Rev ; 28(5): 949-965, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34579558

RESUMO

Musculoskeletal disorders are the most common reason of chronic pain and disability, representing an enormous socioeconomic burden worldwide. In this review, new biomedical application fields for Raman spectroscopy (RS) technique related to skeletal tissues are discussed, showing that it can provide a comprehensive profile of tissue composition in situ, in a rapid, label-free, and nondestructive manner. RS can be used as a tool to study tissue alterations associated to aging, pathologies, and disease treatments. The main advantage with respect to currently applied methods in clinics is its ability to provide specific information on molecular composition, which goes beyond other diagnostic tools. Being compatible with water, RS can be performed without pretreatment on unfixed, hydrated tissue samples, without any labeling and chemical fixation used in histochemical methods. This review first provides the description of the basic principles of RS as a biotechnology tool and is introduced into the field of currently available RS-based techniques, developed to enhance Raman signals. The main spectral processing, statistical tools, fingerprint identification, and available databases are mentioned. The recent literature has been analyzed for such applications of RS as tendon and ligaments, cartilage, bone, and tissue engineered constructs for regenerative medicine. Several cases of proof-of-concept preclinical studies have been described. Finally, advantages, limitations, future perspectives, and challenges for the translation of RS into clinical practice have been also discussed. Impact statement Raman spectroscopy (RS) is a powerful noninvasive tool giving access to molecular vibrations and characteristics of samples in a wavelength window of 600 to 3200 cm-1, thus giving access to a molecular fingerprint of biological samples in a nondestructive way. RS could not only be used in clinical diagnostics, but also be used for quality control of tissues and tissue-engineered constructs, reducing number of samples, time, and the variety of analysis required in the quality control chain before implantation.


Assuntos
Análise Espectral Raman , Engenharia Tecidual , Humanos , Análise Espectral Raman/métodos , Estudos Prospectivos , Cartilagem , Água
4.
Brief Funct Genomics ; 20(3): 135-147, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33782689

RESUMO

Cell competition is defined as the context-dependent elimination of cells that is mediated by intercellular communication, such as paracrine or contact-dependent cell signaling, and/or mechanical stresses. It is considered to be a quality control mechanism that facilitates the removal of suboptimal cells from both adult and embryonic tissues. Cell competition, however, can also be hijacked by transformed cells to acquire a 'super-competitor' status and outcompete the normal epithelium to establish a precancerous field. To date, many genetic drivers of cell competition have been identified predominately through studies in Drosophila. Especially during the last couple of years, ethylmethanesulfonate-based genetic screens have been instrumental to our understanding of the molecular regulators behind some of the most common competition mechanisms in Drosophila, namely competition due to impaired ribosomal function (or anabolism) and mechanical sensitivity. Despite recent findings in Drosophila and in mammalian models of cell competition, the drivers of mammalian cell competition remain largely elusive. Since the discovery of CRISPR/Cas9, its use in functional genomics has been indispensable to uncover novel cancer vulnerabilities. We envision that CRISPR/Cas9 screens will enable systematic, genome-scale probing of mammalian cell competition to discover novel mutations that not only trigger cell competition but also identify novel molecular components that are essential for the recognition and elimination of less fit cells. In this review, we summarize recent contributions that further our understanding of the molecular mechanisms of cell competition by genetic screening in Drosophila, and provide our perspective on how similar and novel screening strategies made possible by whole-genome CRISPR/Cas9 screening can advance our understanding of mammalian cell competition in the future.


Assuntos
Sistemas CRISPR-Cas , Competição entre as Células , Animais , Sistemas CRISPR-Cas/genética , Testes Genéticos , Genoma , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa