Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 85(4): 2232-2246, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104248

RESUMO

PURPOSE: Oxygen-17 (17 O) MRS imaging, successfully used in the brain, is extended by imaging the oxygen metabolic rate in the resting skeletal muscle and used to determine the total whole-body oxygen metabolic rate in the rat. METHODS: During and after inhalations of 17 O2 gas, dynamic 17 O MRSI was performed in rats (n = 8) ventilated with N2 O or N2 at 16.4 T. Time courses of the H217 O concentration from regions of interest located in brain and muscle tissue were examined and used to fit an animal-adapted 3-phase metabolic model of oxygen consumption. CBF was determined with an independent washout method. Finally, body oxygen metabolic rate was calculated using a global steady-state approach. RESULTS: Cerebral metabolic rate of oxygen consumption was 1.97 ± 0.19 µmol/g/min on average. The resting metabolic rate of oxygen consumption in skeletal muscle was 0.32 ± 0.12 µmol/g/min and >6 times lower than cerebral metabolic rate of oxygen consumption. Global oxygen consumed by the body was 24.2 ± 3.6 mL O2 /kg body weight/min. CBF was estimated to be 0.28 ± 0.02 mL/g/min and 0.34 ± 0.06 mL/g/min for the N2 and N2 O ventilation condition, respectively. CONCLUSION: We have evaluated the feasibility of 17 O MRSI for imaging and quantifying the oxygen consumption rate in low metabolizing organs such as the skeletal muscle at rest. Additionally, we have shown that CBF is slightly increased in the case of ventilation with N2 O. We expect this study to be beneficial to the application of 17 O MRSI to a wider range of organs, although further validation is advised.


Assuntos
Circulação Cerebrovascular , Consumo de Oxigênio , Animais , Encéfalo/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Oxigênio , Ratos
2.
Front Cardiovasc Med ; 8: 721354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485418

RESUMO

Background: To provide energy for cardiopulmonary function and maintenance of blood glucose, acute aerobic exercise induces lipolysis, fatty acid oxidation (FAO), glycolysis, and glycogenolysis/gluconeogenesis. These adaptations are mediated by increases in cortisol, growth hormone (GH), and catecholamines and facilitated by a decline in insulin. Branched-chain amino acids (BCAA) also undergo catabolism during intense exercise. Here, we investigated the relationship between BCAA catabolism and metrics of cardiopulmonary function in healthy, well-developed, mature adolescent athletes undergoing an acute bout of maximal aerobic exercise. Hypothesis: We hypothesized: (a) acute maximal exercise in adolescents induces lipolysis, FAO, and BCAA catabolism associated with increases in GH and cortisol and a reduction in insulin; (b) increases in GH are associated with increases in ghrelin; and (c) metrics of cardiopulmonary function (aVO2, rVO2, aVO2/HRmax) following maximal exercise correlate with increases in GH secretion, FAO, and BCAA catabolism. Methods: Blood samples before and after maximal cardiopulmonary exercise in 11 adolescent athletes were analyzed by tandem-mass spectrometry. Paired, two-tailed student's t-tests identified significant changes following exercise. Linear regression determined if pre-exercise metabolite levels, or changes in metabolite levels, were associated with aVO2, rVO2, and aVO2/HRmax. Sex and school of origin were included as covariates in all regression analyses. Results: Following exercise there were increases in GH and cortisol, and decreases in ghrelin, but no changes in glucose or insulin concentrations. Suggesting increased lipolysis and FAO, the levels of glycerol, ketones, ß-hydroxybutyrate, and acetylcarnitine concentrations increased. Pyruvate, lactate, alanine, and glutamate concentrations also increased. Plasma concentrations of valine (a BCAA) declined (p = 0.002) while valine degradation byproducts increased in association with decreases in urea cycle amino acids arginine and ornithine. Metrics of cardiopulmonary function were associated with increases in propionylcarnitine (C3, p = 0.013) and Ci4-DC/C4-DC (p < 0.01), byproducts of BCAA catabolism. Conclusions: Induction of lipolysis, FAO, gluconeogenesis, and glycogenolysis provides critical substrates for cardiopulmonary function during exercise. However, none of those pathways were significantly associated with metrics of cardiopulmonary function. The associations between rVO2, and aVO2/HRmax and C3 and Ci4-DC/C4-DC suggest that the cardiopulmonary response to maximal exercise in adolescents is linked to BCAA utilization and catabolism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa