Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Crit Rev Toxicol ; 54(2): 123-133, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411492

RESUMO

Pyrrolizidine alkaloids (PAs) are one type of phytotoxins distributed in various plants, including many medicinal herbs. Many organs might suffer injuries from the intake of PAs, and the liver is the most susceptible one. The diagnosis, toxicological mechanism, and detoxification of PAs-induced hepatotoxicity have been studied for several decades, which is of great significance for its prevention, diagnosis, and therapy. When the liver was exposed to PAs, liver sinusoidal endothelial cells (LSECs) loss, hemorrhage, liver parenchymal cells death, nodular regeneration, Kupffer cells activation, and fibrogenesis occurred. These pathological changes classified the PAs-induced liver injury as acute, sub-acute, and chronic type. PAs metabolic activation, mitochondria injury, glutathione (GSH) depletion, inflammation, and LSECs damage-induced activation of the coagulation system were well recognized to play critical roles in the pathological process of PAs-induced hepatotoxicity. A lot of natural compounds like glycyrrhizic acid, (-)-epicatechin, quercetin, baicalein, chlorogenic acid, and so on were demonstrated to be effective in alleviating PAs-induced liver injury, which rendered them huge potential to be developed into therapeutic drugs for PAs poisoning in clinics. This review presents updated information about the diagnosis, toxicological mechanism, and detoxification studies on PAs-induced hepatotoxicity.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Plantas Medicinais , Alcaloides de Pirrolizidina , Alcaloides de Pirrolizidina/toxicidade , Alcaloides de Pirrolizidina/metabolismo , Plantas Medicinais/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Glutationa/metabolismo , Extratos Vegetais
2.
Ecotoxicol Environ Saf ; 277: 116374, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677072

RESUMO

Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.


Assuntos
Clorpirifos , Proteínas de Choque Térmico HSP70 , Nitrilas , Oligoquetos , Estresse Oxidativo , Piretrinas , Poluentes do Solo , Superóxido Dismutase , Animais , Oligoquetos/efeitos dos fármacos , Clorpirifos/toxicidade , Piretrinas/toxicidade , Nitrilas/toxicidade , Superóxido Dismutase/metabolismo , Poluentes do Solo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Carboxilesterase/metabolismo , Inseticidas/toxicidade , Caspase 3/metabolismo , Caspase 3/genética , Calreticulina/genética , Calreticulina/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética
3.
Ecotoxicol Environ Saf ; 272: 116023, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290311

RESUMO

An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Humanos , Sistema Endócrino , Poluentes Químicos da Água/toxicidade
4.
Drug Chem Toxicol ; : 1-15, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465444

RESUMO

Alkaloids are naturally occurring compounds with complex structures found in natural plants. To further improve the understanding of plant alkaloids, this review focuses on the classification, toxicity and mechanisms of action, providing insight into the occurrence of alkaloid-poisoning events and guiding the safe use of alkaloids in food, supplements and clinical applications. Based on their chemical structure, alkaloids can be divided into organic amines, diterpenoids, pyridines, isoquinolines, indoles, pyrrolidines, steroids, imidazoles and purines. The mechanisms of toxicity of alkaloids, including neurotoxicity, hepatoxicity, nephrotoxicity, cardiotoxicity and cytotoxicity, have also been reviewed. Some cases of alkaloid poisoning have been introduced when used as food or clinically, including accidental food poisoning, excessive consumption, and poisoning caused by the improper use of alkaloids in a clinical setting, and the importance of safety evaluation was illustrated. This review summarizes the toxicity and mechanism of action of alkaloids and provides evidence for the need for the safe use of alkaloids in food, supplements and clinical applications.

5.
Fish Shellfish Immunol ; 121: 124-134, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34998984

RESUMO

The protective effect of ß-glucan against toxicological effects caused by copper oxide nanoparticles (Cu NPs) and copper ions (Cu ions) were studied in monocytes/macrophages (MO/MФ) of Nile tilapia (Oreochromis niloticus). Our results demonstrated that CuO NPs and Cu ions exposure aroused strong oxidative lesion in MO/MФ by detection of cellular reactive oxygen species (ROS) and reduced glutathione (GSH), as well as identification of several antioxidant-related cytokines. Meanwhile, the serious pro-inflammatory responses were accompanied during the processes of oxidative lesion by TNFα, IL-1ß, and IL-6 genes validation. Copper induced MO/MФ underwent apoptosis through mitochondrial signaling pathway by mitochondrial membrane potential (ΔΨm) detection and Bax, Bcl-2, Cyt-c, Apaf-1, Caspase 9, Caspase 3 genes validation. Furthermore, the phagocytic abilities were inhibition in MO/MФ by evaluation of microspheres (0.5 and 1.0 µm beads) and bioparticles (S. agalactiae and A. hydrophila) uptake and LPS-induced NO production. However, ß-glucan might participate in immunomodulation through C-type lectin receptor (CLR) and complement receptor 3 (CR3) to suppress pro-inflammatory responses, thereby revered all the copper induced aforementioned adverse effects in MO/MΦ. Taken together, our results provide insights on the mechanisms through ß-glucan administration to mitigate toxicological effects of CuO NPs and Cu ions exposure to the MO/MΦ, which will benefit aspects related to fish farming and aquaculture production.


Assuntos
Ciclídeos , Cobre , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , beta-Glucanas , Animais , Ciclídeos/imunologia , Cobre/toxicidade , beta-Glucanas/uso terapêutico
6.
Environ Sci Technol ; 56(9): 5664-5672, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35438966

RESUMO

Perfluorooctanoic acid (PFOA) is a persistent organic pollutant, which has endocrine-disrupting properties and can interfere with the synthesis and secretion of testicular steroid hormones, but the underlying molecular mechanisms are still not fully understood. In this study, we investigated the effects of low doses of PFOA exposure on testicular steroidogenesis in rats and revealed the role of histone modifications. It was found that the serum levels of progesterone, testosterone, and estradiol were significantly increased after 0.015 and 0.15 mg/kg of PFOA exposure, and the expression of Star, a key rate-limiting gene, was up-regulated, while other steroidogenic genes Cyp11a1, Hsd3b, Cyp17a1, and Hsd17b were down-regulated. In addition, the levels of multiple histone modifications (H3K9me1/2/3 and H3K9/18/23ac) were all significantly reduced by PFOA in rat testis. Histone H3K9 methylation is associated with gene silencing, while histone acetylation leads to gene activation. ChIP analysis further showed that H3K9me1/3 was significantly decreased in the promoter region of Star, while H3K18ac levels were down-regulated in other gene promoters. Accordingly, we suggest that low-level PFOA enhances StAR expression through the repression of H3K9me1/3, which stimulates steroid hormone production in rat testis. These results are expected to shed new light on the molecular mechanisms by which low-dose PFOA disturbs male reproductive endocrine from an epigenetic aspect and may be useful for human health risk assessment regarding environmental PFOA exposure.


Assuntos
Histonas , Testosterona , Animais , Caprilatos , Fluorocarbonos , Histonas/metabolismo , Masculino , Metilação , Ratos , Esteroides , Testosterona/metabolismo
7.
Ecotoxicol Environ Saf ; 247: 114207, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36274322

RESUMO

Water pollution from lead/Pb2+ poses a significant threat to aquatic ecosystems, and its repercussions on aquatic animals have received considerable attention. Although Pb2+ has been found to affect numerous aspects of animals, including individual fitness, metabolic status, and symbiotic microbiota, few studies have focused on the associations between Pb2+-induced variations in fitness, metabolome, symbiotic microbiome, and environmental parameters in the same system, limiting a comprehensive understanding of ecotoxicological mechanisms from a holistic perspective. Moreover, most ecotoxicological studies neglected the potential contributions of anions to the consequences generated by inorganic lead compounds. We investigated the effects of Pb(NO3)2 at environmentally relevant concentrations on the Rana omeimontis tadpoles and the water quality around them, using blank and NaNO3-treated groups as control. Results showed that Pb(NO3)2 not only induced a rise in water nitrite level, but exposure to this chemical also impaired tadpole fitness-related traits (e.g., growth and development). The impacts on tadpoles were most likely a combination of Pb2+ and NO3-. Tissue metabolomics revealed that Pb(NO3)2 exposure influenced animal substrate (i.e., carbohydrate, lipid, and amino acid) and prostaglandin metabolism. Pb(NO3)2 produced profound shifts in gut microbiota, with increased Proteobacteria impairing Firmicutes, resulting in higher aerobic and possibly pathogenic bacteria. NaNO3 also influenced tadpole metabolome and gut microbiome, in a manner different to that of Pb(NO3)2. The presence of NO3- seemed to counteract some changes caused by Pb2+, particularly on the microbiota. Piecewise structural equation model and correlation analyses demonstrated connections between tissue metabolome and gut microbiome, and the variations in tadpole phenotypic traits and water quality were linked to changes in tissue metabolome and gut microbiome. These findings emphasized the important roles of gut microbiome in mediating the effects of toxin on aquatic ecosystem. Moreover, it is suggested to consider the influences of anions in the risk assessment of heavy metal pollutions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Larva , Chumbo/toxicidade , Qualidade da Água , Metaboloma
8.
Ecotoxicol Environ Saf ; 248: 114325, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436255

RESUMO

Ammonia has been reported to have a variety of toxicity to aquatic animals, farm animals and humans. However, its potential toxicity on the intestines remains unknown. L-selenomethionine is one of the important organic selenium sources. However, the mitigating effect of L-selenomethionine on ammonia exposure toxicity is still lacking. Therefore, in this study, the mechanism of toxic action of ammonia on intestinal tract and the detoxification effect of L-selenomethionine were examined. We evaluated the intestinal toxicity of ammonia and the alleviating effect of L-selenomethionine in an in vivo model, and then verified it in vitro model by a variety of cutting-edge experimental techniques. Our results showed that ammonia exposure causes oxidative stress, necroptosis, Th1/Th2 imbalance and inflammation in the intestinal tissue and the intestinal cells, and L-selenomethionine had a significant mitigation effect on the changes of these indexes induced by ammonia. In conclusion, ammonia exposure caused oxidative stress and Th1/Th2 imbalance in the porcine small intestine and IPEC-J2 cells, and that excessive ROS accumulation-mediated necroptosis targeted inflammatory responses, resulting in the destruction of tight connections of intestinal cells, thereby causing intestinal barrier dysfunction. L-selenomethionine could effectively reduce the intestinal injury caused by ammonia exposure and antagonize the toxic effect of ammonia.


Assuntos
Amônia , Selênio , Humanos , Suínos , Animais , Amônia/toxicidade , Selenometionina/farmacologia , Antioxidantes , Estresse Oxidativo , Selênio/farmacologia
9.
J Appl Toxicol ; 41(6): 878-897, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33113590

RESUMO

Environmental epigenetic findings shed new light on the roles of epigenetic regulations in environmental exposure-induced toxicities or disease susceptibilities. Currently, environmental emerging contaminants (ECs) are in focus for further investigation due to the evidence of human exposure in addition to their environmental occurrences. However, the adverse effects of these environmental ECs on health through epigenetic mechanisms are still poorly addressed in many aspects. This review discusses the epigenetic mechanisms (DNA methylation, histone modifications, and microRNA expressions) linking ECs exposure to health outcomes. We emphasized on the recent literature describing how ECs can dysregulate epigenetic mechanisms and lead to downstream health outcomes. These up-to-date research outputs could provide novel insights into the toxicological mechanisms of ECs. However, the field still faces a demand for further studies on the broad spectrum of health effects, synergistic/antagonistic effects, transgenerational epigenetic effects, and epidemiologic and demographic data of ECs.


Assuntos
Exposição Ambiental , Poluentes Ambientais/toxicidade , Epigenoma , Metilação de DNA , Epigênese Genética , Humanos
10.
Front Physiol ; 15: 1427385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974516

RESUMO

Introduction: Plumbagin is an important phytochemical and has been reported to exhibit potent larvicidal activity against several insect pests, However, the insecticidal mechanism of plumbagin against pests is still poorly understood. This study aimed to investigate the insecticidal activities of plumbagin and the underlying molecular mechanisms against a devastating agricultural pest, the fall armyworm Spodoptera frugiperda. Methods: The effects of plumbagin on S. frugiperda larval development and the activities of two detoxification enzymes were initially examined. Next, transcriptomic changes in S. frugiperda after plumbagin treatment were investigated. Furthermore, RNA-seq results were validated by qPCR. Results: Plumbagin exhibited a high larvicidal activity against the second and third instar larvae of S. frugiperda with 72 h LC50 of 0.573 and 2.676 mg/g, respectively. The activities of the two detoxification enzymes carboxylesterase and P450 were significantly increased after 1.5 mg/g plumbagin treatment. Furthermore, RNA-seq analysis provided a comprehensive overview of complex transcriptomic changes in S. frugiperda larvae in response to 1.5 mg/g plumbagin exposure, and revealed that plumbagin treatment led to aberrant expression of a large number of genes related to nutrient and energy metabolism, humoral immune response, insect cuticle protein, chitin-binding proteins, chitin synthesis and degradation, insect hormone, and xenobiotic detoxification. The qPCR results further validated the reproducibility and reliability of the transcriptomic data. Discussion: Our findings provide a valuable insight into understanding the insecticidal mechanism of the phytochemical plumbagin.

11.
Sci Total Environ ; 922: 171255, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417517

RESUMO

The neurotoxin ß-N-methylamino-L-alanine (BMAA) has been deemed as a risk factor for some neurodegenerative diseases such as amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC). This possible link has been proved in some primate models and cell cultures with the appearance that BMAA exposure can cause excitotoxicity, formation of protein aggregates, and/or oxidative stress. The neurotoxin BMAA extensively exists in the environment and can be transferred through the food web to human beings. In this review, the occurrence, toxicological mechanisms, and characteristics of BMAA were comprehensively summarized, and proteins and peptides were speculated as its possible binding substances in biological matrices. It is difficult to compare the published data from previous studies due to the inconsistent analytical methods and components of BMAA. The binding characteristics of BMAA should be focused on to improve our understanding of its health risk to human health in the future.


Assuntos
Diamino Aminoácidos , Neurotoxinas , Animais , Humanos , Neurotoxinas/química , Diamino Aminoácidos/toxicidade , Diamino Aminoácidos/química , Toxinas de Cianobactérias , Estresse Oxidativo
12.
Curr Res Toxicol ; 6: 100157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420185

RESUMO

Thallium (Tl) is one of the most toxic metals and its historic use in homicides has led it to be known as "the poisoner's poison." This review summarizes the methods for identifying Tl and determining its concentrations in biological samples in recently reported poisoning cases, as well as the toxicokinetics, toxicological effects, toxicity mechanisms, and detoxication methods of Tl. Recent findings regarding Tl neurotoxicological pathways and toxicological effects of Tl during pregnancy are also presented. Confirmation of elevated Tl concentrations in blood, urine, or hair is indispensable for diagnosing Tl poisoning. The kidneys show the highest Tl concentration within 24 h after ingestion, while the brain shows the highest concentration thereafter. Tl has a very slow excretion rate due to its large distribution volume. Following acute exposure, gastrointestinal symptoms are observed at an early stage, and neurological dysfunction is observed later: Tl causes the most severe damage in the central nervous system. Alopecia and Mees' lines in the nails are observed within 1 month after Tl poisoning. The toxicological mechanism of Tl is considered to be interference of vital potassium-dependent processes with Tl+ because its ionic radius is similar to that of K+, as well as inhibition of enzyme reactions by the binding of Tl to -SH groups, which disturbs vital metabolic processes. Tl toxicity is also related to reactive oxygen species generation and mitochondrial dysfunction. Prussian blue is the most effective antidote, and metallothionein alone or in combination with Prussian blue was recently reported to have cytoprotective effects after Tl exposure. Because Tl poisoning cases are still reported, early determination of Tl in biological samples and treatment with an antidote are essential.

13.
Biol Trace Elem Res ; 202(1): 9-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36976450

RESUMO

Zinc oxide (ZnO) nanoparticles (NPs) are widely used as a sunscreen, antibacterial agent, dietary supplement, food additive, and semiconductor material. This review summarizes the biological fate following various exposure routes, toxicological effects, and toxicity mechanism of ZnO NPs in mammals. Furthermore, an approach to reduce the toxicity and biomedical applications of ZnO NPs are discussed. ZnO NPs are mainly absorbed as Zn2+ and partially as particles. Regardless of exposure route, elevated Zn concentration in the liver, kidney, lungs, and spleen are observed following ZnO NP exposure, and these are the target organs for ZnO NPs. The liver is the main organ responsible for ZnO NP metabolism and the NPs are mainly excreted in feces and partly in urine. ZnO NPs induce liver damage (oral, intraperitoneal, intravenous, and intratracheal exposure), kidney damage (oral, intraperitoneal, and intravenous exposure) and lung injury (airway exposure). Reactive oxygen species (ROS) generation and induction of oxidative stress may be a major toxicological mechanism for ZnO NPs. ROS are generated by both excess Zn ion release and the particulate effect resulting from the semiconductor or electronic properties of ZnO NPs. ZnO NP toxicity can be reduced by coating their surface with silica, which prevents Zn2+ release and ROS generation. Due to their superior characteristics, ZnO NPs are expected to be used for biomedical applications, such as bioimaging, drug delivery, and anticancer agents, and surface coatings and modification will expand the biomedical applications of ZnO NPs further.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Toxicocinética , Distribuição Tecidual , Nanopartículas/toxicidade , Mamíferos/metabolismo
14.
Toxicol Appl Pharmacol ; 272(2): 551-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23811331

RESUMO

Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptors of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction.


Assuntos
Aldeídos/toxicidade , Misturas Complexas/toxicidade , Modelos Biológicos , Nitrilas/toxicidade , Photobacterium/efeitos dos fármacos , Testes de Toxicidade/métodos , Sinergismo Farmacológico , Modelos Lineares , Relação Quantitativa Estrutura-Atividade
15.
Toxics ; 11(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112607

RESUMO

A large amount of nano-/microparticles (MNPs) are released into water, not only causing severe water pollution, but also negatively affecting organisms. Therefore, it is crucial to evaluate MNP toxicity and mechanisms in water. There is a significant degree of similarity between the genes, the central nervous system, the liver, the kidney, and the intestines of zebrafish and the human body. It has been shown that zebrafish are exceptionally suitable for evaluating the toxicity and action mechanisms of MNPs in water on reproduction, the central nervous system, and metabolism. Providing ideas and methods for studying MNP toxicity, this article discusses the toxicity and mechanisms of MNPs from zebrafish.

16.
J Hazard Mater ; 458: 131594, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330373

RESUMO

The mechanisms underlying the toxicity of environmental stress are unclear for marine macrobenthos. Copper/Cu has posed the most serious threats to amphioxus, an ancient and model benthic cephalochordate. Herein, a dynamic change in the physiological parameters (GR, SOD, ATP, and MDA) was detected with ROS accumulation in Branchiostoma belcheri exposed to 0.3 mg·L-1 Cu. Transcriptomes and microRNAomes of B. belcheri were generated to investigate the molecular mechanisms by which this amphioxus copes with Cu exposure. Time-specific genes identified at different time points after exposure were involved in the stimulus and immune response, detoxification and ionic homeostasis, aging and the nervous system, sequentially, with prolongation of exposure time, forming a dynamic process of molecular response to Cu stress. In total, 57 differentially expressed miRNAs were identified under Cu stress. Transcriptomics-miRNAomics analyses indicate that these miRNAs targeted genes associated with many key biological processes such as xenobiotics degradation, oxidative stress, and energy metabolism. The constructed miRNA-mRNA-pathway network uncovered a broad post-transcriptional regulatory mechanism in B. belcheri to cope with Cu stress. Overall, this integrated analyses show that enhanced defense response, accelerated ROS elimination, and repressed ATP production constitute a comprehensive strategy to cope with Cu toxicity in the ancient macrobenthos.


Assuntos
Anfioxos , MicroRNAs , Animais , Transcriptoma , Cobre/toxicidade , Cobre/metabolismo , Espécies Reativas de Oxigênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Trifosfato de Adenosina/metabolismo
17.
Food Chem Toxicol ; 179: 113976, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532173

RESUMO

The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.


Assuntos
Disruptores Endócrinos , Receptores de Esteroides , Humanos , Receptor de Pregnano X , Receptores de Esteroides/metabolismo , Disruptores Endócrinos/farmacologia , Receptores Citoplasmáticos e Nucleares
18.
ACS Nano ; 17(10): 8851-8865, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37145866

RESUMO

Oral exposure is known as the primary way for silver nanoparticles (AgNPs), which are commonly used as food additives or antibacterial agents in commercial products, to enter the human body. Although the health risk of AgNPs has been a concern and extensively researched over the past few decades, there are still numerous knowledge gaps that need to be filled to disclose what AgNPs experience in the gastrointestinal tract (GIT) and how they cause oral toxicity. In order to gain more insight into the fate of AgNPs in the GIT, the main gastrointestinal transformation of AgNPs, including aggregation/disaggregation, oxidative dissolution, chlorination, sulfuration, and corona formation, is first described. Second, the intestinal absorption of AgNPs is presented to show how AgNPs interact with epithelial cells and cross the intestinal barrier. Then, more importantly, we make an overview of the mechanisms underlying the oral toxicity of AgNPs in light of recent advances as well as the factors affecting the nano-bio interactions in the GIT, which have rarely been thoroughly elaborated in published literature. At last, we emphatically discuss the issues that need to be addressed in the future to answer the question "How does oral exposure to AgNPs cause detrimental effects on the human body?".


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Nanopartículas Metálicas/toxicidade , Trato Gastrointestinal , Aditivos Alimentares
19.
Food Chem Toxicol ; 160: 112798, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34973406

RESUMO

Due to the globalization, mycotoxins have been considered a major risk to human health being the main contaminants of foodstuffs. Among them, AFB1 and OTA are the most toxic and studied. Therefore, the goal of this review is to deepen the knowledge about the toxicological effects that AFB1 and OTA can induce on human health by using flow cytometry and immunofluorescence techniques in vitro and in vivo models. The examination of the selected reports shows that the majority of them are focused on immunotoxicity while the rest are concerned about nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, neurotoxicity, embryotoxicity, reproductive system, breast, esophageal and lung toxicity. In relation to immunofluorescence analysis, biological processes related to AFB1- and OTA-toxicity were evaluated such as inflammation, neuronal differentiation, DNA damage, oxidative stress and cell death. In flow cytometry analysis, a wide range of assays have been performed across the reviewed studies being apoptosis assay, cell cycle analysis and intracellular ROS measurement the most employed. Although, the toxic effects of AFB1 and OTA have been reported, further research is needed to clarify AFB1 and OTA-mechanism of action on human health.


Assuntos
Aflatoxina B1/toxicidade , Citometria de Fluxo/métodos , Imunofluorescência/métodos , Ocratoxinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos
20.
Chemosphere ; 307(Pt 4): 136203, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36037960

RESUMO

Although pesticides commonly exist as combinations in real-life situations of the aquatic ecosystem, the impact of the toxicity of their mixtures has remained largely unclear. In this study, we investigated the combined effects of two neurotoxic pesticides, including one organophosphate insecticide phoxim (PHO) and one pyrethroid insecticide lambda-cyhalothrin (LCY), on the embryos of the small yellow croaker (Larimichthys polyactis), and their potential pathways. LCY exhibited higher toxicity relative to PHO, with a 72-h LC50 value of 0.0074 mg a.i. L-1, while the corresponding value for PHO was 0.12 mg a.i. L-1. The mixture of PHO and LCY exerted a synergistic effect on the embryos of L. polyactis. The activities of antioxidant enzyme CAT and apoptotic enzyme caspase 3 were substantially changed in most single and combined exposure groups relative to the baseline value. Under both single and combined exposures, more significant changes were found in the mRNA expression of five genes, including the immunosuppression gene ngln2, the apoptosis gene P53, the endocrine system gene cyp19a1b, as well as neurodevelopment genes of ap and acp2, relative to the baseline value. Furthermore, the non-target metabolomic analysis demonstrated that hundreds of differential metabolites, including two bile acids (taurodeoxycholic acid and tauroursodeoxycholic acid), were significantly increased in the exposure groups. The bile acids were closely associated with the gut microbiota, and 16S rRNA sequencing results demonstrated dysfunction of the gut microbiota after exposure, especially in the combined exposure group. Our findings indicated that there might be a potential risk connected to the co-occurrence of these two pesticides in aquatic vertebrates. Consequently, future ecological risk assessments should incorporate synergistic mixtures because the current risk assessments do not consider them.


Assuntos
Inseticidas , Perciformes , Praguicidas , Piretrinas , Animais , Antioxidantes , Ácidos e Sais Biliares , Caspase 3 , Ecossistema , Inseticidas/toxicidade , Nitrilas , Organofosfatos , Compostos Organotiofosforados , Perciformes/genética , Praguicidas/toxicidade , Piretrinas/toxicidade , RNA Mensageiro , RNA Ribossômico 16S , Ácido Taurodesoxicólico , Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa