Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38900308

RESUMO

To meet the growing demand for intraoperative molecular imaging, the development of compatible imaging agents plays a crucial role. Given the unique requirements of surgical applications compared to diagnostics and therapy, maximizing translational potential necessitates distinctive imaging agent designs. For effective surgical guidance, exogenous signatures are essential and are achievable through a diverse range of imaging labels such as (radio)isotopes, fluorescent dyes, or combinations thereof. To achieve optimal in vivo utility a balanced molecular design of the tracer as a whole is required, which ensures a harmonious effect of the imaging label with the affinity and specificity (e.g., pharmacokinetics) of a pharmacophore/targeting moiety. This review outlines common design strategies and the effects of refinements in the molecular imaging agent design on the agent's pharmacological profile. This includes the optimization of affinity, pharmacokinetics (including serum binding and target mediated background), biological clearance route, the achievable signal intensity, and the effect of dosing hereon.

2.
J Nucl Cardiol ; 35: 101814, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246258

RESUMO

Vicarious excretion of tracer and contrast media is a known phenomenon and is not fully understood [1,2]. We report a case of unexpected vicarious excretion of 99mTc-pyrophosphate in the gallbladder seen on a scan performed to evaluate suspected cardiac amyloidosis, which is the first report of this phenomenon to the best of our knowledge.


Assuntos
Vesícula Biliar , Compostos Radiofarmacêuticos , Pirofosfato de Tecnécio Tc 99m , Humanos , Vesícula Biliar/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacocinética , Masculino , Feminino , Idoso , Amiloidose/diagnóstico por imagem , Pessoa de Meia-Idade , Cardiomiopatias/diagnóstico por imagem
3.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139248

RESUMO

Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.


Assuntos
Artrite Reumatoide , Doenças não Transmissíveis , Humanos , Ciclo-Oxigenase 2/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Biomarcadores/metabolismo , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/patologia , Inflamação/metabolismo , Receptores de GABA/metabolismo , Proteínas de Transporte/metabolismo
4.
J Nucl Cardiol ; 29(5): 2171-2187, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34734365

RESUMO

Cardiac sarcoidosis (CS) is an inflammatory disease with high morbidity and mortality, with a pathognomonic feature of non-caseating granulomatous inflammation. While 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a well-established modality to image inflammation and diagnose CS, there are limitations to its specificity and reproducibility. Imaging focused on the molecular processes of inflammation including the receptors and cellular microenvironments present in sarcoid granulomas provides opportunities to improve upon FDG-PET imaging for CS. This review will highlight the current limitations of FDG-PET imaging for CS while discussing emerging new nuclear imaging molecular targets for the imaging of cardiac sarcoidosis.


Assuntos
Cardiomiopatias , Miocardite , Sarcoidose , Cardiomiopatias/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Inflamação/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sarcoidose/diagnóstico por imagem
5.
Eur J Nucl Med Mol Imaging ; 48(6): 1759-1772, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33369690

RESUMO

PURPOSE: Deposition of misfolded alpha-synuclein (αSYN) aggregates in the human brain is one of the major hallmarks of synucleinopathies. However, a target-specific tracer to detect pathological aggregates of αSYN remains lacking. Here, we report the development of a positron emission tomography (PET) tracer based on anle138b, a compound shown to have therapeutic activity in animal models of neurodegenerative diseases. METHODS: Specificity and selectivity of [3H]MODAG-001 were tested in in vitro binding assays using recombinant fibrils. After carbon-11 radiolabeling, the pharmacokinetic and metabolic profile was determined in mice. Specific binding was quantified in rats, inoculated with αSYN fibrils and using in vitro autoradiography in human brain sections of Lewy body dementia (LBD) cases provided by the Neurobiobank Munich (NBM). RESULTS: [3H]MODAG-001 revealed a very high affinity towards pure αSYN fibrils (Kd = 0.6 ± 0.1 nM) and only a moderate affinity to hTau46 fibrils (Kd = 19 ± 6.4 nM) as well as amyloid-ß1-42 fibrils (Kd = 20 ± 10 nM). [11C]MODAG-001 showed an excellent ability to penetrate the mouse brain. Metabolic degradation was present, but the stability of the parent compound improved after selective deuteration of the precursor. (d3)-[11C]MODAG-001 binding was confirmed in fibril-inoculated rat striata using in vivo PET imaging. In vitro autoradiography showed no detectable binding to aggregated αSYN in human brain sections of LBD cases, most likely, because of the low abundance of aggregated αSYN against background protein. CONCLUSION: MODAG-001 provides a promising lead structure for future compound development as it combines a high affinity and good selectivity in fibril-binding assays with suitable pharmacokinetics and biodistribution properties.


Assuntos
Doença por Corpos de Lewy , Doenças Neurodegenerativas , Animais , Radioisótopos de Carbono , Camundongos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos , Distribuição Tecidual , alfa-Sinucleína/metabolismo
6.
Pharmacol Res ; 173: 105886, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536549

RESUMO

OBJECTIVES: To enable non-invasive real-time quantification of vasopressin 1A (V1A) receptors in peripheral organs, we sought to develop a suitable PET probe that would allow specific and selective V1A receptor imaging in vitro and in vivo. METHODS: We synthesized a high-affinity and -selectivity ligand, designated compound 17. The target structure was labeled with carbon-11 and tested for its utility as a V1A-targeted PET tracer by cell uptake studies, autoradiography, in vivo PET imaging and ex vivo biodistribution experiments. RESULTS: Compound 17 (PF-184563) and the respective precursor for radiolabeling were synthesized in an overall yield of 49% (over 7 steps) and 40% (over 8 steps), respectively. An inhibitory constant of 0.9 nM towards the V1A receptors was measured, while excellent selectivity over the related V1B, V2 and OT receptor (IC50 >10,000 nM) were obtained. Cell uptake studies revealed considerable V1A binding, which was significantly reduced in the presence of V1A antagonists. Conversely, there was no significant blockade in the presence of V1B and V2 antagonists. In vitro autoradiography and PET imaging studies in rodents indicated specific tracer binding mainly in the liver. Further, the pancreas, spleen and the heart exhibited specific binding of [11C]17 ([11C]PF-184563) by ex vivo biodistribution experiments. CONCLUSION: We have developed the first V1A-targeted PET ligand that is suitable for subtype-selective receptor imaging in peripheral organs including the liver, heart, pancreas and spleen. Our findings suggest that [11C]PF-184563 can be a valuable tool to study the role of V1A receptors in liver diseases, as well as in cardiovascular pathologies.


Assuntos
Benzodiazepinas/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Receptores de Vasopressinas/metabolismo , Triazóis/farmacologia , Animais , Autorradiografia , Benzodiazepinas/farmacocinética , Células CHO , Radioisótopos de Carbono , Cricetulus , Feminino , Ligantes , Fígado/metabolismo , Masculino , Camundongos , Miocárdio/metabolismo , Pâncreas/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Ratos Wistar , Baço/metabolismo , Triazóis/farmacocinética
7.
J Nucl Cardiol ; 28(1): 295-299, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31515758

RESUMO

BACKGROUND: Although N13-ammonia has favorable properties among FDA approved radiotracers, complexity of implementation has limited its use. We describe the initial patient experience of N13-ammonia PET imaging using a compact N13-ammonia production system. METHODS: N13 was produced using the ION-12SC, a 12MeV, 10uA superconducting minimally shielded cyclotron, and reduced to N13-ammonia in an automated multi-use purification unit. Patients were power injected with 9.3 ± 1.1 mCi (344.1 ± 40.7 MBq) of N13-ammonia for rest imaging, and 18.8 ± 0.9 mCi (695.6 ± 33.3 MBq) of N13-ammonia was injected at peak hyperemia for stress testing. Images were interpreted for relative perfusion, left ventricular volumes/function, blood flow quantification, and scored for image quality. RESULTS: In total 97 patients underwent 98 N13-ammonia PET scans (32 rest only/65 rest-stress/1 stress only). Image quality was 91.8% good or excellent. None were poor/non-diagnostic. Study durations were acceptable. Tracer related radiation dosimetry to patients was 0.7 ± 0.1 mSv (rest only), and 2.1 ± 0.1 mSv (rest-stress). CONCLUSION: Clinical N13-ammonia production by the Ionetix ION-12SC delivers high quality myocardial PET perfusion images in a rapid protocol.


Assuntos
Amônia , Doença da Artéria Coronariana/diagnóstico por imagem , Imagem de Perfusão do Miocárdio , Radioisótopos de Nitrogênio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Idoso , Ciclotrons , Composição de Medicamentos/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Supercondutividade
8.
J Nucl Cardiol ; 28(1): 50-54, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32909238

RESUMO

In contrast to cardiac sympathetic activity which can be assessed with established PET tracers, there are currently no suitable radioligands to measure cardiac parasympathetic (cholinergic) activity. A radioligand able to measure cardiac cholinergic activity would be an invaluable clinical and research tool since cholinergic dysfunction has been associated with a wide array of pathologies (e.g., chronic heart failure, myocardial infarction, arrythmias). [18F]Fluoroethoxybenzovesamicol (FEOBV) is a cholinergic radiotracer that has been extensively validated in the brain. Whether FEOBV PET can be used to assess cholinergic activity in the heart is not known. Hence, this study aimed to evaluate the properties of FEOBV for cardiac PET imaging and cholinergic activity mapping. PET data were collected for 40 minutes after injection of 230 ± 50 MBq of FEOBV in four healthy participants (1 female; Age: 37 ± 10; BMI: 25 ± 2). Dynamic LV time activity curves were fitted with Logan graphical, 1-tissue compartment, and 2-tissue compartment models, yielding similar distribution volume estimates for each participant. Our initial data show that FEOBV PET has favorable tracer kinetics for quantification of cholinergic activity and is a promising new method for assessing parasympathetic function in the heart.


Assuntos
Coração/diagnóstico por imagem , Miocárdio/metabolismo , Piperidinas/farmacocinética , Tomografia por Emissão de Pósitrons , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência
9.
Mol Pharm ; 12(12): 4529-41, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26560069

RESUMO

The unbound drug concentration-effect relationship in brain is a key aspect in CNS drug discovery and development. In this work, we describe an in vitro high-throughput distribution assay between an aqueous buffer and a microemulsion of porcine brain polar lipids (BPL). The derived distribution coefficient LogDBPL was applied to the prediction of unbound drug concentrations in brain (Cu,b) and nonspecific binding to brain tissue. The in vivo relevance of the new assay was assessed for a large set of proprietary drug candidates and CNS drugs by (1) comparing observed compound concentrations in rat CSF with Cu,b calculated using the LogDBPL assay in combination with total drug brain concentrations, (2) comparing Cu,b derived from LogDBPL and total drug brain concentrations to Cu,b estimated using in vitro P-glycoprotein efflux ratio data and unbound drug plasma levels, and (3) comparing tissue nonspecific binding data from human brain autoradiography studies for 17 PET tracer candidates to distribution in BPL. In summary, the LogDBPL assay provides a predicted drug fraction unbound in brain tissue that is nearly identical to brain homogenate equilibrium dialysis with an estimation of in vivo Cu,b that is superior to LogD in octanol. LogDBPL complements the approach for predicting Cu,b based on in vitro P-glycoprotein efflux ratio and in vivo unbound plasma concentration and stands as a fast and cost-effective tool for nonspecific brain binding optimization of PET ligand candidates.


Assuntos
Bioensaio/métodos , Encéfalo/metabolismo , Fármacos do Sistema Nervoso Central/metabolismo , Lipídeos/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
10.
J Labelled Comp Radiopharm ; 58(7): 265-73, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25997728

RESUMO

Serotonin 2A receptors have been implicated in various psychophysiological functions and disorders such as depression, Alzheimer's disease, or schizophrenia. Therefore, neuroimaging of this specific receptor is of significant clinical interest, and it is not surprising that many attempts have been made to develop a suitable 5-HT2A R positron emission tomography-tracer. In this review, we give an overview on the precursor, reference compound synthesis, and the preparation of promising 5-HT2A R radiopharmaceuticals applied in positron emission tomography. We also highlight possible learning outcomes that can be made from these tracer development processes.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas da Serotonina/síntese química
11.
Molecules ; 20(7): 13112-26, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26197305

RESUMO

In order to compare the coordination properties of 1,4,7-triazacyclononane (tacn) derivatives bearing varying numbers of phosphinic/carboxylic acid pendant groups towards 68Ga, 1,4,7-triazacyclononane-7-acetic-1,4-bis(methylenephosphinic) acid (NOPA) and 1,4,7- triazacyclononane-4,7-diacetic-1-[methylene(2-carboxyethyl)phosphinic] acid (NO2AP) were synthesized using Mannich reactions with trivalent or pentavalent forms of H-phosphinic acids as phosphorus components. Stepwise protonation constants logK1-3 12.06, 3.90 and 1.95, and stability constants with GaIII and CuII, logKGaL 24.01 and logKCuL 16.66, were potentiometrically determined for NOPA. Both ligands were labelled with 68Ga and compared with NOTA (tacn-N,N',N″-triacetic acid) and NOPO, a TRAP-type [tacn-N,N',N″- tris(methylenephosphinic acid)] chelator. At pH 3, NOPO and NOPA showed higher labelling efficiency (binding with lower ligand excess) at both room temperature and 95 °C, compared to NO2AP and NOTA. Labelling efficiency at pH = 0-3 correlated with a number of phosphinic acid pendants: NOPO >> NOPA > NO2AP >> NOTA; however, it was more apparent at 95 °C than at room temperature. By contrast, NOTA was found to be labelled more efficiently at pH > 4 compared to the ligands with phosphinic acids. Overall, replacement of a single phosphinate donor with a carboxylate does not challenge 68Ga labelling of TRAP-type chelators. However, the presence of carboxylates facilitates labelling at neutral or weakly acidic pH.


Assuntos
Quelantes , Radioisótopos de Gálio/química , Gálio/química , Compostos Heterocíclicos , Quelantes/síntese química , Quelantes/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química
12.
ACS Infect Dis ; 10(2): 270-286, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38290525

RESUMO

The unique structural architecture of the peptidoglycan allows for the stratification of bacteria as either Gram-negative or Gram-positive, which makes bacterial cells distinguishable from mammalian cells. This classification has received attention as a potential target for diagnostic and therapeutic purposes. Bacteria's ability to metabolically integrate peptidoglycan precursors during cell wall biosynthesis and recycling offers an opportunity to target and image pathogens in their biological state. This Review explores the peptidoglycan biosynthesis for bacteria-specific targeting for infection imaging. Current and potential radiolabeled peptidoglycan precursors for bacterial infection imaging, their development status, and their performance in vitro and/or in vivo are highlighted. We conclude by providing our thoughts on how to shape this area of research for future clinical translation.


Assuntos
Infecções Bacterianas , Peptidoglicano , Animais , Bactérias , Infecções Bacterianas/diagnóstico por imagem , Parede Celular/química , Mamíferos
13.
Front Immunol ; 14: 1268900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799715

RESUMO

Introduction: T cell Ig and ITIM domain receptor (TIGIT) is a next-generation immune checkpoint predominantly expressed on activated T cells and NK cells, exhibiting an unfavorable prognostic association with various malignancies. Despite the emergence of multiple TIGIT-blocking agents entering clinical trials, only a fraction of patients responded positively to anti-TIGIT therapy. Consequently, an urgent demand arises for noninvasive techniques to quantify and monitor TIGIT expression, facilitating patient stratification and enhancing therapeutic outcomes. Small antigen binding moieties such as nanobodies, are promising candidates for such tracer development. Methods: We generated a panel of anti-human or anti-mouse TIGIT nanobodies from immunized llamas. In addition, we designed a single-chain variable fragment derived from the clinically tested monoclonal antibody Vibostolimab targeting TIGIT, and assessed its performance alongside the nanobodies. In vitro characterization studies were performed, including binding ability and affinity to cell expressed or recombinant TIGIT. After Technetium-99m labeling, the nanobodies and the single-chain variable fragment were evaluated in vivo for their ability to detect TIGIT expression using SPECT/CT imaging, followed by ex vivo biodistribution analysis. Results: Nine nanobodies were selected for binding to recombinant and cell expressed TIGIT with low sub-nanomolar affinities and are thermostable. A six-fold higher uptake in TIGIT-overexpressing tumor was demonstrated one hour post- injection with Technetium-99m labeled nanobodies compared to an irrelevant control nanobody. Though the single-chain variable fragment exhibited superior binding to TIGIT-expressing peripheral blood mononuclear cells in vitro, its in vivo behavior yielded lower tumor-to-background ratios at one hour post- injection, indicating that nanobodies are better suited for in vivo imaging than the single-chain variable fragment. Despite the good affinity, high specificity and on-target uptake in mice in this setting, imaging of TIGIT expression on tumor- infiltrating lymphocytes within MC38 tumors remained elusive. This is likely due to the low expression levels of TIGIT in this model. Discussion: The excellent affinity, high specificity and rapid on-target uptake in mice bearing TIGIT- overexpressing tumors showed the promising diagnostic potential of nanobodies to noninvasively image high TIGIT expression within the tumor. These findings hold promise for clinical translation to aid patient selection and improve therapy response.


Assuntos
Neoplasias , Anticorpos de Cadeia Única , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Tecnécio , Anticorpos de Domínio Único/química , Distribuição Tecidual , Leucócitos Mononucleares , Tomografia Computadorizada de Emissão de Fóton Único , Neoplasias/diagnóstico por imagem , Receptores Imunológicos
14.
Biomolecules ; 13(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37371522

RESUMO

BACKGROUND: The occurrence of accidental nerve damage during surgery and the increasing application of image guidance during head-and-neck surgery have highlighted the need for molecular targeted nerve-sparing interventions. The implementation of such interventions relies on the availability of nerve-specific tracers. In this paper, we describe the development of a truncated peptide that has an optimized affinity for protein zero (P0), the most abundant protein in myelin. METHODS AND MATERIALS: Further C- and N-terminal truncation was performed on the lead peptide Cy5-P0101-125. The resulting nine Cy5-labelled peptides were characterized based on their photophysical properties, P0 affinity, and in vitro staining. These characterizations were combined with evaluation of the crystal structure of P0, which resulted in the selection of the optimized tracer Cy5-P0112-125. A near-infrared Cy7-functionalized derivative (Cy7-P0112-125) was used to perform an initial evaluation of fluorescence-guided surgery in a porcine model. RESULTS: Methodological truncation of the 26-amino-acid lead compound Cy5-P0101-125 resulted in a size reduction of 53.8% for the optimized peptide Cy5-P0112-125. The peptide design and the 1.5-fold affinity gain obtained after truncation could be linked to interactions observed in the crystal structure of the extracellular portion of P0. The near-infrared analogue Cy7-P0112-125 supported nerve illumination during fluorescence-guided surgery in the head-and-neck region in a porcine model. CONCLUSIONS: Methodological truncation yielded a second-generation P0-specific peptide. Initial surgical evaluation suggests that the peptide can support molecular targeted nerve imaging.


Assuntos
Aminoácidos , Proteína P0 da Mielina , Animais , Suínos , Proteína P0 da Mielina/análise , Proteína P0 da Mielina/química , Proteína P0 da Mielina/metabolismo , Aminoácidos/análise , Fluorescência , Peptídeos/análise , Bainha de Mielina/metabolismo
15.
ACS Chem Neurosci ; 14(20): 3752-3760, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788055

RESUMO

The cannabinoid type 2 receptor (CB2) has been implicated in a variety of central and peripheral inflammatory diseases, prompting significant interest in the development of CB2-targeted diagnostic and therapeutic agents. A validated positron emission tomography (PET) radioligand for imaging CB2 in the living human brain as well as in peripheral tissues is currently lacking. As part of our research program, we have recently identified the trisubstituted pyridine, [18F]RoSMA-18-d6, which proved to be highly suitable for in vitro and in vivo mapping of CB2 in rodents. The aim of this study was to assess the performance characteristics of [18F]RoSMA-18-d6 in nonhuman primates (NHPs) to pave the way for clinical translation. [18F]RoSMA-18-d6 was synthesized from the respective tosylate precursor according to previously reported procedures. In vitro autoradiograms with NHP spleen tissue sections revealed a high binding of [18F]RoSMA-18-d6 to the CB2-rich NHP spleen, which was significantly blocked by coincubation with the commercially available CB2 ligand, GW405833 (10 µM). In contrast, no specific binding was observed by in vitro autoradiography with NHP brain sections, which was in agreement with the notion of a CB2-deficient healthy mammalian brain. In vitro findings were corroborated by PET imaging experiments in NHPs, where [18F]RoSMA-18-d6 uptake in the spleen was dose-dependently attenuated with 1 and 5 mg/kg GW405833, while no specific brain signal was observed. Remarkably, we observed tracer uptake and retention in the NHP spinal cord, which was reduced by GW405833 blockade, pointing toward a potential utility of [18F]RoSMA-18-d6 in probing CB2-expressing cells in the bone marrow. If these observations are substantiated in NHP models of enhanced leukocyte proliferation in the bone marrow, [18F]RoSMA-18-d6 may serve as a valuable marker for hematopoietic activity in various pathologies. In conclusion, [18F]RoSMA-18-d6 proved to be a suitable PET radioligand for imaging CB2 in NHPs, supporting its translation to humans.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Humanos , Compostos Radiofarmacêuticos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ligantes , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Primatas/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Radioisótopos de Flúor/metabolismo , Mamíferos/metabolismo
16.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215337

RESUMO

Personalized treatment of cancer patients demands specific and validated biomarkers for tumor diagnosis and therapy. The development and validation of such require translational preclinical models that recapitulate human diseases as accurately as possible. Moreover, there is a need for convergence of different (pre)clinical disciplines that openly share their knowledge and methodologies. This review sheds light on the differential perception of biomarkers and gives an overview of currently used models in tracer development and approaches for biomarker discovery.

17.
Front Aging Neurosci ; 14: 830704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572127

RESUMO

The accumulation of α-synuclein aggregates (α-syn) in the human brain is an occurrence common to all α-synucleinopathies. Non-invasive detection of these aggregates in a living brain with a target-specific radiotracer is not yet possible. We have recently discovered that the inclusion of a methylenedioxy group in the structure of diarylbisthiazole (DABTA)-based tracers improves binding affinity and selectivity to α-syn. Subsequently, complementary in silico modeling and machine learning (ML) of tracer-protein interactions were employed to predict surface sites and structure-property relations for the binding of the ligands. Based on this observation, we developed a small focused library of DABTAs from which 4-(benzo[d][1,3]dioxol-5-yl)-4'-(3-[18F]fluoro-4-methoxyphenyl)-2,2'-bithiazole [ 18 F]d 2, 6-(4'-(3-[18F]fluoro-4-methoxyphenyl)-[2,2'-bithiazol]-4-yl)-[1,3]dioxolo[4,5-b]pyridine [ 18 F]d 4, 4-(benzo [d][1,3]dioxol-5-yl)-4'-(6-[18F]fluoropyridin-3-yl)-2,2'-bithiazole [ 18 F]d 6, and 6-(4'-(6-[18F]fluoropyridin-3-yl)-[2,2'-bithiazol]-4-yl)-[1,3]dioxolo[4,5-b]pyridine [ 18 F]d 8 were selected based on their high binding affinity to α-syn and were further evaluated. Binding assay experiments carried out with the non-radioactive versions of the above tracers d 2, d 4, d 6, and d 8 showed high binding affinity of the ligands to α-syn: 1.22, 0.66, 1.21, and 0.10 nM, respectively, as well as excellent selectivity over ß-amyloid plaques (Aß) and microtubular tau aggregates (>200-fold selectivity). To obtain the tracers, their precursors were radiolabeled either via an innovative ruthenium-mediated (SNAr) reaction ([ 18 F]d 2 and [ 18 F]d 4) or typical SNAr reaction ([ 18 F]d 6 and [ 18 F]d 8) with moderate-to-high radiochemical yields (13% - 40%), and high molar activity > 60 GBq/µmol. Biodistribution experiments carried out with the tracers in healthy mice revealed that [ 18 F]d 2 and [ 18 F]d 4 showed suboptimal brain pharmacokinetics: 1.58 and 4.63 %ID/g at 5 min post-injection (p.i.), and 1.93 and 3.86 %ID/g at 60 min p.i., respectively. However, [ 18 F]d 6 and [ 18 F]d 8 showed improved brain pharmacokinetics: 5.79 and 5.13 %ID/g at 5 min p.i.; 1.75 and 1.07 %ID/g at 60 min p.i.; and 1.04 and 0.58 %ID/g at 120 min p.i., respectively. The brain uptake kinetics of [ 18 F]d 6 and [ 18 F]d 8 were confirmed in a dynamic PET study. Both tracers also showed no brain radiometabolites at 20 min p.i. in initial in vivo stability experiments carried out in healthy mice. [ 18 F]d 8 seems very promising based on its binding properties and in vivo stability, thus encouraging further validation of its usefulness as a radiotracer for the in vivo visualization of α-syn in preclinical and clinical settings. Additionally, in silico and ML-predicted values correlated with the experimental binding affinity of the ligands.

18.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199622

RESUMO

The muscarinic cholinergic system regulates peripheral and central nervous system functions, and, thus, their potential as a therapeutic target for several neurodegenerative diseases is undoubted. A clinically applicable positron emission tomography (PET) tracer would facilitate the monitoring of disease progression, elucidate the role of muscarinic acetylcholine receptors (mAChR) in disease development and would aid to clarify the diverse natural functions of mAChR regulation throughout the nervous system, which still are largely unresolved. Still, no mAChR PET tracer has yet found broad clinical application, which demands mAChR tracers with improved imaging properties. This paper reviews strategies of mAChR PET tracer design and summarizes the binding properties and preclinical evaluation of recent mAChR tracer candidates. Furthermore, this work identifies the current major challenges in mAChR PET tracer development and provides a perspective on future developments in this area of research.

19.
Nucl Med Biol ; 92: 65-71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387114

RESUMO

The understanding of metabolic disease and diabetes on a molecular level has increased significantly due to the recent advances in molecular biology and biotechnology. However, in vitro studies and animal models do not always translate to the human disease, perhaps illustrated by the failure of many drug candidates in the clinical phase. Non-invasive biomedical imaging techniques such as Positron Emission Tomography (PET) offer tools for direct visualization and quantification of molecular processes in humans. Developments in this area potentially enable longitudinal in vivo studies of receptors and processes involved in diabetes guiding drug development and diagnosis in the near future. This mini-review focuses on describing the overall perspective of how PET can be used to increase our understanding and improve treatment of diabetes. The methodological aspects and future developments and challenges are highlighted.


Assuntos
Diabetes Mellitus/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Diabetes Mellitus/metabolismo , Humanos , Compostos Radiofarmacêuticos
20.
EJNMMI Radiopharm Chem ; 5(1): 23, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33169204

RESUMO

BACKGROUND: Oncrasin-1 is a small molecule which was identified from a screen of KRAS mutant cancer cells and has shown specificity for KRAS mutant cell killing. We aimed to develop a radiolabelled form of Oncrasin-1 to enable in-vivo imaging of mutant KRAS expression in malignant tumours. This work outlines the synthesis of 3 fluorinated derivatives and development of iodonium salt and boronic ester precursors for radiolabelling with the 18F isotope. RESULTS: In our hands, synthesis of iodonium salts were not easily accessible due to the 3-carbaldehyde indole structure being preferentially oxidized by conditions required for iodonium salt formation, rather than benzyl iodide. Synthesis and radiolabelling of boronic acid pinacol ester precursors were successful, with the products being obtained in yields of 10.76% ± 0.96% (n = 5), 14.7% ±8.58% (n = 3) and 14.92% ±3.9% (n = 3) for 18F KAM001, 18F KAM002 and 18F KAM003 respectively, with radiochemical purity of greater than 99%. CONCLUSIONS: The successful synthesis of these tracers has been undertaken utilizing boronic ester radio-fluorination methods and will allow for investigation of Oncrasin based molecules as potential diagnostics for cancers expressing mutant KRAS protein.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa