Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2354652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868454

RESUMO

Charge transport in organic semiconductors occurs via overlapping molecular orbitals quantified by transfer integrals. However, no statistical study of transfer integrals for a wide variety of molecules has been reported. Here we present a statistical analysis of transfer integrals for more than 27,000 organic compounds in the Cambridge Structural Database. Interatomic transfer integrals were used to identify substructures with high transfer integrals. As a result, thione and amine groups as in thiourea were found to exhibit high transfer integrals. Such compounds are considered as potential non-aromatic, water-soluble organic semiconductors.


The analysis of interatomic transfer integrals for 27,718 organic compounds revealed that thione (S=R)­amine (NR3) and thione­thione interactions tend to increase transfer integrals and are suitable to high­mobility organic semiconductors.

2.
Adv Mater ; 32(2): e1904634, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31736151

RESUMO

Organic semiconductors demonstrate several advantages over conventional inorganic materials for novel electronic and optoelectronic applications, including molecularly tunable properties, flexibility, low-cost, and facile device integration. However, before organic semiconductors can be used for the next-generation devices, such as ultrafast photodetectors (PDs), it is necessary to develop new materials that feature both high mobility and ambient stability. Toward this goal, a highly stable PD based on the organic single crystal [PtBr2 (5,5'-bis(CF3 CH2 OCH2 )-2,2'-bpy)] (or "Pt complex (1o)") is demonstrated as the active semiconductor channel-a material that features a lamellar molecular structure and high-quality, intraligand charge transfer. Benefitting from its unique crystal structure, the Pt-complex (1o) device exhibits a field-effect mobility of ≈0.45 cm2 V-1 s-1 without loss of significant performance under ambient conditions even after 40 days without encapsulation, as well as immersion in distilled water for a period of 24 h. Furthermore, the device features a maximum photoresponsivity of 1 × 103 A W-1 , a detectivity of 1.1 × 1012 cm Hz1/2 W-1 , and a record fast response/recovery time of 80/90 µs, which has never been previously achieved in other organic PDs. These findings strongly support and promote the use of the single-crystal Pt complex (1o) in next-generation organic optoelectronic devices.

3.
Nanomaterials (Basel) ; 6(10)2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28335314

RESUMO

G-quadruplex is a quadruple helical form of nucleic acids that can appear in guanine-rich parts of the genome. The basic unit is the G-tetrad, a planar assembly of four guanines connected by eight hydrogen bonds. Its rich topology and its possible relevance as a drug target for a number of diseases have stimulated several structural studies. The superior stiffness and electronic π-π overlap between consecutive G-tetrads suggest exploitation for nanotechnologies. Here we inspect the intimate link between the structure and the electronic properties, with focus on charge transfer parameters. We show that the electronic couplings between stacked G-tetrads strongly depend on the three-dimensional atomic structure. Furthermore, we reveal a remarkable correlation with the topology: a topology characterized by the absence of syn-anti G-G sequences can better support electronic charge transfer. On the other hand, there is no obvious correlation of the electronic coupling with usual descriptors of the helix shape. We establish a procedure to maximize the correlation with a global helix shape descriptor.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa