RESUMO
Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.
Assuntos
Helmintíase , Helmintos , Parasitos , Animais , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Linfócitos , Linfócitos TRESUMO
Jellyfish are radially symmetric organisms without a brain that arose more than 500 million years ago. They achieve organismal behaviors through coordinated interactions between autonomously functioning body parts. Jellyfish neurons have been studied electrophysiologically, but not at the systems level. We introduce Clytia hemisphaerica as a transparent, genetically tractable jellyfish model for systems and evolutionary neuroscience. We generate stable F1 transgenic lines for cell-type-specific conditional ablation and whole-organism GCaMP imaging. Using these tools and computational analyses, we find that an apparently diffuse network of RFamide-expressing umbrellar neurons is functionally subdivided into a series of spatially localized subassemblies whose synchronous activation controls directional food transfer from the tentacles to the mouth. These data reveal an unanticipated degree of structured neural organization in this species. Clytia affords a platform for systems-level studies of neural function, behavior, and evolution within a clade of marine organisms with growing ecological and economic importance.
Assuntos
Evolução Biológica , Hidrozoários/genética , Modelos Animais , Neurociências , Animais , Animais Geneticamente Modificados , Comportamento Animal , Comportamento Alimentar , Marcação de Genes , Hidrozoários/fisiologia , Modelos Biológicos , Rede Nervosa/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismoRESUMO
Improved methods for manipulating and analyzing gene function have provided a better understanding of how genes work during organ development and disease. Inducible functional genetic mosaics can be extraordinarily useful in the study of biological systems; however, this experimental approach is still rarely used in vertebrates. This is mainly due to technical difficulties in the assembly of large DNA constructs carrying multiple genes and regulatory elements and their targeting to the genome. In addition, mosaic phenotypic analysis, unlike classical single gene-function analysis, requires clear labeling and detection of multiple cell clones in the same tissue. Here, we describe several methods for the rapid generation of transgenic or gene-targeted mice and embryonic stem (ES) cell lines containing all the necessary elements for inducible, fluorescent, and functional genetic mosaic (ifgMosaic) analysis. This technology enables the interrogation of multiple and combinatorial gene function with high temporal and cellular resolution.
Assuntos
Marcação de Genes/métodos , Animais , Linhagem Celular , Células-Tronco Embrionárias , Camundongos , Camundongos TransgênicosRESUMO
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Assuntos
Técnicas Genéticas/tendências , Camundongos/genética , Modelos Animais , AnimaisRESUMO
Delivering molecular tools into oocytes is essential for developmental and reproductive biology. Microinjection, the conventional method, is equipment intensive, often technically challenging and has a low yield, and is impractical in species with delicate oocytes or restricted spawning seasons. To overcome these limitations, we developed VitelloTag, a cost-effective, high-throughput system using vitellogenin-derived fusion proteins to enable efficient cargo delivery via receptor-mediated endocytosis. We demonstrate its utility by delivering Cas9/sgRNA complexes in two distantly related species for gene knockout.
Assuntos
Oócitos , Vitelogeninas , Oócitos/metabolismo , Animais , Vitelogeninas/metabolismo , Vitelogeninas/genética , Feminino , Sistemas CRISPR-Cas/genética , Endocitose , Técnicas de Inativação de Genes , Microinjeções/métodos , Peixe-Zebra/embriologiaRESUMO
Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.
Assuntos
Técnicas de Transferência de Genes , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Elementos de DNA Transponíveis/genéticaRESUMO
Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving Wolbachia that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.
Assuntos
Agentes de Controle Biológico , Controle de Doenças Transmissíveis , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Culicidae/genética , Controle de Mosquitos/métodos , Animais , Doenças Transmissíveis/transmissão , Culicidae/parasitologia , Culicidae/fisiologia , Culicidae/virologia , Humanos , Infertilidade , Malária , Wolbachia/genéticaRESUMO
BACKGROUND: Rainbowfish is a clade of colorful freshwater fish. Melanotaenia praecox is a small rainbowfish species with biological characteristics that make it potentially useful as an experimental model species. We anticipate that M. praecox could become a new model used in various fields, such as ecology, evolution, and developmental biology. However, few previous studies have described experimental set-ups needed to understand the molecular and genetic mechanisms within this species. RESULTS: We describe detailed procedures for genetic engineering in the rainbowfish M. praecox. By using these procedures, we successfully demonstrated CRISPR/Cas-mediated knockout and Tol2 transposon-mediated transgenesis in this species. Regarding the CRISPR/Cas system, we disrupted the tyrosinase gene and then showed that injected embryos lacked pigmentation over much of their body. We also demonstrated that a Tol2 construct, including a GFP gene driven by a ubiquitous promoter, was efficiently integrated into the genome of M. praecox embryos. CONCLUSIONS: The establishment of procedures for genetic engineering in M. praecox enables investigation of the genetic mechanisms behind a broad range of biological phenomena in this species. Thus, we suggest that M. praecox can be used as a new model species in various experimental biology fields.
RESUMO
BACKGROUND: The Tol2 transposable element is the most widely used transgenesis tool in zebrafish. However, its high activity almost always leads to multiple unlinked integrations of the transgenic cassette in F1 fish. Each of these transgenes is susceptible to positional effects from the surrounding regulatory landscape, which can lead to altered expression and, consequently, activity. Scientists therefore must strike a balance between the need to maximize reproducibility by establishing single-insertion transgenic lines and the need to complete experiments within a reasonable timeframe. RESULTS: In this article, we introduce a simple competitive dilution strategy for rapid generation of single-insertion transgenics. By using cry:BFP reporter plasmid as a competitor, we achieved a nearly fourfold reduction in the number of the transgene of interest integrations while simultaneously increasing the proportion of single-insertion F1 generation transgenics to over 50%. We also observed variations in transgene of interest expression among independent single-insertion transgenics, highlighting that the commonly used ubiquitous ubb promoter is susceptible to position effects. CONCLUSIONS: Wide application of our competitive dilution strategy will save time, reduce animal usage, and improve reproducibility of zebrafish research.
RESUMO
Spatial and temporal control of transgene expression is a powerful approach to understand gene functions in specific cells and tissues. The Tet-On system is a robust tool for controlling transgene expression spatially and temporally; however, few studies have examined whether this system can be applied to postembryonic stages of Medaka (Oryzias latipes) or other fishes. Here, we first improved a basal promoter sequence on the donor vector for a nonhomologous end joining (NHEJ)-based knock-in (KI) system. Next, using transgenic Medaka for establishing the Tet-On system by KI, we demonstrated that doxycycline administration for four or more days by feeding can be a stable and efficient method to achieve expression of the transduced reporter gene in adult fish. From these analyses, we propose an optimized approach for a spatio-temporal gene-expression system in the adult stage of Medaka and other small fishes.
Assuntos
Oryzias , Animais , Oryzias/genética , Sistemas CRISPR-Cas , Animais Geneticamente Modificados/genética , Regiões Promotoras Genéticas , Expressão GênicaRESUMO
Genome manipulation methods in C. elegans require microinjecting DNA or ribonucleoprotein complexes into the microscopic core of the gonadal syncytium. These microinjections are technically demanding and represent a key bottleneck for all genome engineering and transgenic approaches in C. elegans. While there have been steady improvements in the ease and efficiency of genetic methods for C. elegans genome manipulation, there have not been comparable advances in the physical process of microinjection. Here, we report a simple and inexpensive method for handling worms using a paintbrush during the injection process that nearly tripled average microinjection rates compared to traditional worm handling methods. We found that the paintbrush increased injection throughput by substantially increasing both injection speeds and post-injection survival rates. In addition to dramatically and universally increasing injection efficiency for experienced personnel, the paintbrush method also significantly improved the abilities of novice investigators to perform key steps in the microinjection process. We expect that this method will benefit the C. elegans community by increasing the speed at which new strains can be generated and will also make microinjection-based approaches less challenging and more accessible to personnel and labs without extensive experience.
Assuntos
Caenorhabditis elegans , Células Germinativas , Animais , Caenorhabditis elegans/genética , Microinjeções/métodos , Animais Geneticamente Modificados , DNA/genética , Sistemas CRISPR-CasRESUMO
BACKGROUND: Transgenic (Tg) mice are widely used in biomedical research, and they are typically generated by injecting transgenic DNA cassettes into pronuclei of one-cell stage zygotes. Such animals often show unreliable expression of the transgenic DNA, one of the major reasons for which is random insertion of the transgenes. We previously developed a method called "pronuclear injection-based targeted transgenesis" (PITT), in which DNA constructs are directed to insert at pre-designated genomic loci. PITT was achieved by pre-installing so called landing pad sequences (such as heterotypic LoxP sites or attP sites) to create seed mice and then injecting Cre recombinase or PhiC31 integrase mRNAs along with a compatible donor plasmid into zygotes derived from the seed mice. PITT and its subsequent version, improved PITT (i-PITT), overcome disadvantages of conventional Tg mice such as lack of consistent and reliable expression of the cassettes among different Tg mouse lines, and the PITT approach is superior in terms of cost and labor. One of the limitations of PITT, particularly using Cre-mRNA, is that the approach cannot be used for insertion of conditional expression cassettes using Cre-LoxP site-specific recombination. This is because the LoxP sites in the donor plasmids intended for achieving conditional expression of the transgene will interfere with the PITT recombination reaction with LoxP sites in the landing pad. RESULTS: To enable the i-PITT method to insert a conditional expression cassette, we modified the approach by simultaneously using PhiC31o and FLPo mRNAs. We demonstrate the strategy by creating a model containing a conditional expression cassette at the Rosa26 locus with an efficiency of 13.7%. We also demonstrate that inclusion of FLPo mRNA excludes the insertion of vector backbones in the founder mice. CONCLUSIONS: Simultaneous use of PhiC31 and FLP in i-PITT approach allows insertion of donor plasmids containing Cre-loxP-based conditional expression cassettes.
Assuntos
Genoma , Integrases , Camundongos Transgênicos , Animais , Camundongos , Integrases/genética , Integrases/metabolismo , Transgenes , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mutagênese InsercionalRESUMO
Social insects, such as ants, bees, wasps, and termites, draw biologists' attention due to their distinctive lifestyles. As experimental systems, they provide unique opportunities to study organismal differentiation, division of labor, longevity, and the evolution of development. Ants are particularly attractive because several ant species can be propagated in the laboratory. However, the same lifestyle that makes social insects interesting also hampers the use of molecular genetic techniques. Here, we summarize the efforts of the ant research community to surmount these hurdles and obtain novel mechanistic insight into the biology of social insects. We review current approaches and propose novel ones involving genomics, transcriptomics, chromatin and DNA methylation profiling, RNA interference (RNAi), and genome editing in ants and discuss future experimental strategies.
Assuntos
Genômica/métodos , Insetos/fisiologia , Animais , Formigas , Comportamento Animal , Cromatina/genética , Genoma de Inseto , Insetos/genética , Interferência de RNA , Análise de Célula Única , Comportamento SocialRESUMO
TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.
Assuntos
Dedos/anormalidades , Doenças do Cabelo , Síndrome de Langer-Giedion , Nariz/anormalidades , Sequências Reguladoras de Ácido Nucleico , Peixe-Zebra , Animais , Camundongos , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Genoma , Sequência de Bases , Expressão Gênica , Mamíferos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismoRESUMO
Salt stress is a common abiotic factor that restricts plant growth and development. As a halophyte, Tamarix hispida is a good model plant for exploring salt-tolerance genes and regulatory mechanisms. DNA-binding with one finger (DOF) is an important transcription factor (TF) that influences and controls various signaling substances involved in diverse biological processes related to plant growth and development, but the regulatory mechanisms of DOF TFs in response to salt stress are largely unknown in T. hispida. In the present study, a newly identified Dof gene, ThDOF8, was cloned from T. hispida, and its expression was found to be induced by salt stress. Transient overexpression of ThDOF8 enhanced T. hispida salt tolerance by enhancing proline levels, and increasing the activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD). These results were also verified in stably transformed Arabidopsis. Results from TF-centered yeast one-hybrid (Y1H) assays and EMSAs showed that ThDOF8 binds to a newly identified cis-element (TGCG). Expression profiling by gene chip analysis identified four potential direct targets of ThDOF8, namely the cysteine-rich receptor-like kinases genes, CRK10 and CRK26, and two glutamate decarboxylase genes, GAD41, and GAD42, and these were further verified by ChIP-quantitative-PCR, EMSAs, Y1H assays, and ß-glucuronidase enzyme activity assays. ThDOF8 can bind to the TGCG element in the promoter regions of its target genes, and transient overexpression of ThCRK10 also enhanced T. hispida salt tolerance. On the basis of our results, we propose a new regulatory mechanism model, in which ThDOF8 binds to the TGCG cis-element in the promoter of the target gene CRK10 to regulate its expression and improve salt tolerance in T. hispida. This study provides a basis for furthering our understanding the role of DOF TFs and identifying other downstream candidate genes that have the potential for improving plant salt tolerance via molecular breeding.
Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tamaricaceae , Fatores de Transcrição , Tamaricaceae/genética , Tamaricaceae/metabolismo , Tamaricaceae/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Estresse Salino/genética , Tolerância ao Sal/genéticaRESUMO
Xenopus is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of Xenopus embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole Xenopus embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of ß-galactosidase expressed from the lacZ gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in Xenopus embryos.
Assuntos
Fosfatase Alcalina , Temperatura Alta , Animais , Feminino , Gravidez , Xenopus laevis , Fosfatase Alcalina/genética , Fosfatase Alcalina/análise , Placenta , Animais Geneticamente ModificadosRESUMO
Abnormal expression of the transcriptional regulator and hedgehog (Hh) signaling pathway effector Gli3 is known to trigger congenital disease, most frequently affecting the central nervous system (CNS) and the limbs. Accurate delineation of the genomic cis-regulatory landscape controlling Gli3 transcription during embryonic development is critical for the interpretation of noncoding variants associated with congenital defects. Here, we employed a comparative genomic analysis on fish species with a slow rate of molecular evolution to identify seven previously unknown conserved noncoding elements (CNEs) in Gli3 intronic intervals (CNE15-21). Transgenic assays in zebrafish revealed that most of these elements drive activities in Gli3 expressing tissues, predominantly the fins, CNS, and the heart. Intersection of these CNEs with human disease associated SNPs identified CNE15 as a putative mammalian craniofacial enhancer, with conserved activity in vertebrates and potentially affected by mutation associated with human craniofacial morphology. Finally, comparative functional dissection of an appendage-specific CNE conserved in slowly evolving fish (elephant shark), but not in teleost (CNE14/hs1586) indicates co-option of limb specificity from other tissues prior to the divergence of amniotes and lobe-finned fish. These results uncover a novel subset of intronic Gli3 enhancers that arose in the common ancestor of gnathostomes and whose sequence components were likely gradually modified in other species during the process of evolutionary diversification.
Assuntos
Elementos Facilitadores Genéticos , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Elementos Facilitadores Genéticos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Animais Geneticamente Modificados , Mamíferos , Evolução Molecular , Sequência Conservada/genéticaRESUMO
Determinate inflorescence is indeed a pivotal agricultural characteristic in crops, notably impacting the architecture modification of Brassica napus (AACC, 2n = 38). Previous study identified a crucial gene Bnsdt2 that encodes the transcription factor BnaC09.TFL1 (Terminal Flower 1). Here by two alleles were cloned and sequenced from indeterminate 2982 and determinate 4769, respectively, we found that BnaC09.TFL1 harbors two T/C and G/C non-synonymous mutations in exon 1, and contains sixty-six differences in a 1.9 Kb promoter sequence. Subsequently, BnaC09.TFL1 was introduced into B. napus 571 line by genetic complementation and overexpression, transgenic plants 571CTO lines and 571TClines were all restored to the indeterminate inflorescence. Interestingly, after BnaC09.TFL1 was knocked out in 'Westar', transgenic plants WestarTcr lines were mutated to determinate inflorescences. Additionally, a NIL-4769 line was constructed to evaluate the effect of BnaC09.TFL1 on agronomic traits of Brassica napus, the results demonstrated that BnaC09.tfl1 reduced the plant height and increased the branch number and branch thousand grain weight of Brassica napus. Finally, we performed RT-qPCR, GUS staining and subcellular localization experiments to analyze the expression pattern of BnaC09.TFL1, the results showed that the expression of BnaC09.TFL1 at shoot apex of NIL-4769 was higher than that of 4769, GUS activity was detected at apical of Arabidopsis thaliana and BnC09.TFL1-GFP was detected in cell membrane, nucleus and cytoplasm. Our findings provide a firm molecular foundation for the study of rapeseed's molecular mechanism of determinate inflorescence formation, as well as theoretical guidance for the application of determinate inflorescence in rapeseed breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01503-7.
RESUMO
Enhancers and promoters are cis-regulatory elements that control gene expression. Enhancers are activated in a cell type-, tissue-, and condition-specific manner to stimulate promoter function and transcription. Zebrafish have emerged as a powerful animal model for examining the activities of enhancers derived from various species through transgenic enhancer assays, in which an enhancer is coupled with a minimal promoter. However, the efficiency of minimal promoters and their compatibility with multiple developmental and regeneration enhancers have not been systematically tested in zebrafish. Thus, we assessed the efficiency of six minimal promoters and comprehensively interrogated the compatibility of the promoters with developmental and regeneration enhancers. We found that the fos minimal promoter and Drosophila synthetic core promoter (DSCP) yielded high rates of leaky expression that may complicate the interpretation of enhancer assays. Notably, the adenovirus E1b promoter, the zebrafish lepb 0.8-kb (P0.8) and lepb 2-kb (P2) promoters, and a new zebrafish synthetic promoter (ZSP) that combines elements of the E1b and P0.8 promoters drove little or no ectopic expression, making them suitable for transgenic assays. We also found significant differences in compatibility among specific combinations of promoters and enhancers, indicating the importance of promoters as key regulatory elements determining the specificity of gene expression. Our study provides guidelines for transgenic enhancer assays in zebrafish to aid in the discovery of functional enhancers regulating development and regeneration.
Assuntos
Elementos Facilitadores Genéticos , Peixe-Zebra , Animais , Elementos Facilitadores Genéticos/genética , Peixe-Zebra/genética , Regiões Promotoras Genéticas/genética , Animais Geneticamente Modificados , Drosophila/genéticaRESUMO
Development and regeneration are orchestrated by gene regulatory networks that operate in part through transcriptional enhancers. Although many enhancers are pleiotropic and are active in multiple tissues, little is known about whether enhancer pleiotropy is due to 1) site pleiotropy, in which individual transcription factor binding sites (TFBS) are required for activity in multiple tissues, or 2) multiple distinct sites that regulate expression in different tissues. Here, we investigated the pleiotropy of an intronic enhancer of the stickleback Bone morphogenetic protein 6 (Bmp6) gene. This enhancer was previously shown to regulate evolved changes in tooth number and tooth regeneration, and is highly pleiotropic, with robust activity in both fins and teeth throughout embryonic, larval, and adult life, and in the heart and kidney in adult fish. We tested the hypothesis that the pleiotropy of this enhancer is due to site pleiotropy of an evolutionarily conserved predicted Foxc1 TFBS. Transgenic analysis and site-directed mutagenesis experiments both deleting and scrambling this predicted Foxc1 TFBS revealed that the binding site is required for enhancer activity in both teeth and fins throughout embryonic, larval, and adult development, and in the heart and kidney in adult fish. Collectively these data support a model where the pleiotropy of this Bmp6 enhancer is due to site pleiotropy and this putative binding site is required for enhancer activity in multiple anatomical sites from the embryo to the adult.