RESUMO
We determined the role played by the transient receptor potential canonical 6 (TRPC6) channel in evoking the mechanical component of the exercise pressor reflex in male decerebrated Sprague-Dawley rats. TRPC6 channels were identified by quadruple-labelled (DiI, TRPC6, neurofilament-200 and peripherin) immunohistochemistry in dorsal root ganglion (DRG) cells innervating the triceps surae muscles (n = 12). The exercise pressor reflex was evoked by statically contracting the triceps surae muscles before and after injection of the TRPC6 antagonist BI-749327 (n = 11; 12 µg kg-1 ) or SAR7334 (n = 11; 7 µg kg-1 ) or the TRPC6 positive modulator C20 (n = 11; 18 µg kg-1 ). Similar experiments were conducted while the muscles were passively stretched (n = 8-12), a manoeuvre that isolated the mechanical component of the reflex. Blood pressure, tension, renal sympathetic nerve activity (RSNA) and blood flow were recorded. Of the DRG cells innervating the triceps surae muscles, 85% stained positive for the TRPC6 antigen, and 45% of those cells co-expressed neurofilament-200. Both TRPC6 antagonists decreased the reflex pressor responses to static contraction (-32 to -42%; P < 0.05) and to passive stretch (-35 to -52%; P < 0.05), whereas C20 increased these responses (55-65%; P < 0.05). In addition, BI-749327 decreased the peak and integrated RSNA responses to both static contraction (-39 to -43%; P < 0.05) and passive stretch (-56 to -62%; P < 0.05), whereas C20 increased the RSNA to passive stretch only. The onset latency of the decrease or increase in RSNA occurred within 2 s of the onset of the manoeuvres (P < 0.05). Collectively, our results show that TRPC6 plays a key role in evoking the mechanical component of the exercise pressor reflex. KEY POINTS: The exercise pressor reflex plays a key role in the sympathetic and haemodynamic responses to exercise. This reflex is composed of two components, namely the mechanoreflex and the metaboreflex. The receptors responsible for evoking the mechanoreflex are poorly documented. A good candidate for this function is the transient receptor potential canonical 6 (TRPC6) channel, which is activated by mechanical stimuli and expressed in dorsal root ganglia of rats. Using two TRPC6 antagonists and one positive modulator, we investigated the role played by TRPC6 in evoking the mechanoreflex in decerebrated rats. Blocking TRPC6 decreased the renal sympathetic and the pressor responses to both contraction and stretch, the latter being a manoeuvre that isolates the mechanoreflex. In contrast, the positive modulator increased the pressor reflex to contraction and stretch, in addition to the sympathetic response to stretch. Our results provide strong support for a role played by the TRPC6 channel in evoking the mechanoreflex.
RESUMO
Increased blood pressure variability (BPV) has been proved to be associated with cardiovascular morbidity and mortality. It is of great significance to elucidate the mechanism of BPV increase. The cation channel transient receptor potential canonical 6 (TRPC6) is involved in a series of cardiovascular disease. Our experiment aimed to explore the role of TRPC6 in the development of BPV increase. Sino-aortic denervation (SAD) operation was applied to establish the model of BPV increase in rats. The BPV was presented as the standard deviation to the mean of systolic or diastolic blood pressure every 1 h during 12 h of the light period. SAD was performed in male Sprague Dawley (SD) rats at the age of 10 weeks. At 8 weeks after SAD operation, the hemodynamic parameters were determined non-invasively via a Rodent Blood Pressure Analysis System. The TRPC6 expressions in myocardial and thoracic aortic tissue was determined utilizing Western Blot, immunofluorescence and quantitative RT-PCR. The expression of TRPC3 was detected as well. To investigate whether TRPC6 was a causative factor of BPV increase in SAD rats, TRPC6 activator and inhibitor with three progressively increasing doses were intraperitoneally injected to the SAD rats. We found that SAD rats presented significant augmentation of systolic and diastolic BPV with no change of BP level and heart rate. The mRNA and protein expression levels of TRPC6 in myocardial and thoracic aortic tissue in SAD rats were substantially increased, but there was no obvious change in TRPC3 expression. The systolic and diastolic BPV increase were dose-dependently exacerbated after TRPC6 activation with GSK1702934A but were dose-dependently attenuated after TRPC6 inhibition with SAR7334. In Conclusion, the TRPC6 (but not TRPC3) expressions in myocardial and thoracic aortic tissue were substantially increased in SAD rats, and TRPC6 probably played an important role in the development of BPV elevation.
Assuntos
Aorta Torácica/metabolismo , Pressão Arterial , Barorreflexo , Frequência Cardíaca , Miocárdio/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/inervação , Pressão Arterial/efeitos dos fármacos , Denervação Autônoma , Barorreflexo/efeitos dos fármacos , Seio Carotídeo/inervação , Frequência Cardíaca/efeitos dos fármacos , Indanos/farmacologia , Masculino , Ratos Sprague-Dawley , Transdução de Sinais , Canais de Cátion TRPC/agonistas , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Regulação para CimaRESUMO
receptor potential canonical (TRPC) channels are presently an emerging target for airway disorders. Recent evidence has indicated that TRPC6 as a member of the TRPC family plays an important role in airway inflammation, but its precise function in bronchial epithelial cells remains unclear. The aim of this study was to investigate the role of TRPC6 in Toll-like receptor 4 (TLR4)-mediated inflammation in human bronchial epithelial cells stimulated by endotoxin [lipopolysaccharide (LPS)]. Hyp9 is a simplified phloroglucinol derivative of hyperforin that highly selectively activates TRPC6 channels. The results show that the activation of TRPC6 by Hyp9 induced the production of interleukin (IL)-8 and IL-6. LPS was also able to induce the release of IL-8 and IL-6, which was significantly aggravated by Hyp9 and reduced by knockdown of TRPC6. Treatment with LPS not only chronically induced the expression of TRPC6 mRNA and protein in a TLR4-dependent manner but also acutely increased Ca2+ influx through TRPC6 channels. In addition, LPS-induced overexpression of TRPC6 and Ca2+ influx were associated with the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt. Importantly, TRPC6 was required for the activation of ERK1/2, p38, and NF-κB. In conclusion, these data reveal that LPS induced the overexpression of TRPC6 and TRPC6-dependent Ca2+ influx via the TLR4/PI3K/Akt pathway resulting in Ca2+ mobilization, which subsequently promoted the activation of ERK1/2, p38, and NF-κB and the inflammatory response in bronchial epithelial cells.
Assuntos
Brônquios/diagnóstico por imagem , Células Epiteliais/efeitos dos fármacos , Inflamação/induzido quimicamente , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Canal de Cátion TRPC6/agonistas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Brônquios/enzimologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/enzimologia , Humanos , Inflamação/enzimologia , Inflamação/genética , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , Terpenos/farmacologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismoRESUMO
Hypoxic pulmonary vasoconstriction (HPV) optimizes pulmonary ventilation-perfusion matching in regional hypoxia, but promotes pulmonary hypertension in global hypoxia. Ventilation-perfusion mismatch is a major cause of hypoxemia in cystic fibrosis. We hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) may be critical in HPV, potentially by modulating the response to sphingolipids as mediators of HPV. HPV and ventilation-perfusion mismatch were analyzed in isolated mouse lungs or in vivo. Ca(2+) mobilization and transient receptor potential canonical 6 (TRPC6) translocation were studied in human pulmonary (PASMCs) or coronary (CASMCs) artery smooth muscle cells. CFTR inhibition or deficiency diminished HPV and aggravated ventilation-perfusion mismatch. In PASMCs, hypoxia caused CFTR to interact with TRPC6, whereas CFTR inhibition attenuated hypoxia-induced TRPC6 translocation to caveolae and Ca(2+) mobilization. Ca(2+) mobilization by sphingosine-1-phosphate (S1P) was also attenuated by CFTR inhibition in PASMCs, but amplified in CASMCs. Inhibition of neutral sphingomyelinase (nSMase) blocked HPV, whereas exogenous nSMase caused TRPC6 translocation and vasoconstriction that were blocked by CFTR inhibition. nSMase- and hypoxia-induced vasoconstriction, yet not TRPC6 translocation, were blocked by inhibition or deficiency of sphingosine kinase 1 (SphK1) or antagonism of S1P receptors 2 and 4 (S1P2/4). S1P and nSMase had synergistic effects on pulmonary vasoconstriction that involved TRPC6, phospholipase C, and rho kinase. Our findings demonstrate a central role of CFTR and sphingolipids in HPV. Upon hypoxia, nSMase triggers TRPC6 translocation, which requires its interaction with CFTR. Concomitant SphK1-dependent formation of S1P and activation of S1P2/4 result in phospholipase C-mediated TRPC6 and rho kinase activation, which conjointly trigger vasoconstriction.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Hipertensão Pulmonar/metabolismo , Pulmão/patologia , Vasoconstrição , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Ceramidas/química , Vasos Coronários/metabolismo , Humanos , Hipóxia/patologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Miócitos de Músculo Liso/metabolismo , Oxigênio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Proteico , Artéria Pulmonar/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/metabolismo , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Fosfolipases Tipo C/metabolismo , Quinases Associadas a rho/metabolismoRESUMO
Transient receptor potential canonical-6 (TRPC6) ion channels, expressed at high levels in podocytes of the filtration barrier, are recently implicated in the pathogenesis of various forms of proteinuric kidney diseases. Indeed, inherited or acquired up-regulation of TRPC6 activities are suggested to play a role in podocytopathies. Yet, we possess limited information about the regulation of TRPC6 in human podocytes. Therefore, in this study, we aimed at defining how the protein kinase C (PKC) system, one of the key intracellular signalling pathways, regulates TRPC6 function and expression. On human differentiated podocytes, we identified the molecular expressions of both TRPC6 and several PKC isoforms. We also showed that TRPC6 channels are functional since the TRPC6 activator 1-oleoyl-2-acetyl-sn-glycerol (OAG) induced Ca(2+) -influx to the cells. By assessing the regulatory roles of the PKCs, we found that inhibitors of the endogenous activities of classical and novel PKC isoforms markedly augmented TRPC6 activities. In contrast, activation of the PKC system by phorbol 12-myristate 13-acetate (PMA) exerted inhibitory actions on TRPC6 and suppressed its expression. Importantly, PMA treatment markedly down-regulated the expression levels of PKCα, PKCß, and PKCη reflecting their activation. Taken together, these results indicate that the PKC system exhibits a 'tonic' inhibition on TRPC6 activity in human podocytes suggesting that pathological conditions altering the expression and/or activation patterns of podocyte-expressed PKCs may influence TRPC6 activity and hence podocyte functions. Therefore, it is proposed that targeted manipulation of certain PKC isoforms might be beneficial in certain proteinuric kidney diseases with altered TRPC6 functions.
Assuntos
Podócitos/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C/metabolismo , Canais de Cátion TRPC/metabolismo , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Diglicerídeos/farmacologia , Expressão Gênica , Humanos , Microscopia Confocal , Podócitos/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
Growing animal studies suggest a risk of neuronal damage following early childhood exposure to anesthesia and sedation drugs including propofol. Inhibition of transient receptor potential canonical 6 (TRPC6) degradation has been shown to protect neurons from neuronal damage induced by multiple brain injury models. Our aim was to investigate whether calpain-TRPC6 pathway is a target in propofol-induced neurotoxicity. Postnatal day (PND) 7 rats were exposed to five bolus injections of 25 mg/kg propofol or 10 % intralipid at hourly intervals. Neuronal injury was assessed by the expression pattern of TUNEL staining and cleaved-caspase-3. The Morris water maze test was used to evaluate learning and memory functions in later life. Pretreatments consisting of intracerebroventricular injections of a TRPC6 agonist, TRPC6 inhibitor, or calpain inhibitor were used to confirm the potential role of the calpain-TRPC6 pathway in propofol-induced neurotoxicity. Prolonged exposure to propofol induced neuronal injury, downregulation of TRPC6, and enhancement of calpain activity in the cerebral cortex up to 24 h after anesthesia. It also induced long-term behavioral disorders, manifesting as longer escape latency at PND40 and PND41 and as fewer platform-crossing times and less time spent in the target quadrant at PND42. These propofol-induced effects were attenuated by treatment with the TRPC6 agonist and exaggerated by the TRPC6 inhibitor. Pretreatment with the calpain inhibitor alleviated the propofol-induced TRPC6 downregulation and neuronal injury in the cerebral cortex. In conclusion, our data suggest that a calpain-TRPC6 signaling pathway contributes to propofol-induced acute cortical neuron injury and long-term behavioral disorders in rats.
Assuntos
Propofol , Pré-Escolar , Ratos , Animais , Humanos , Propofol/toxicidade , Calpaína/metabolismo , Canal de Cátion TRPC6/metabolismo , Encéfalo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/farmacologiaRESUMO
BACKGROUND: The transient receptor potential canonical 6 (TRPC6) channel has been studied in pathologies of the hepatobiliary system. Information on the localization of TRPC6-protein in anatomical and histological structures of the human hepatobiliary system in elderly with and without liver disease is lacking. METHODS: Samples were obtained from twelve nitrite pickling salt-ethanol-polyethylene glycol-fixed corpses of the four anatomical liver lobes, collum and the remaining gallbladder, the common bile duct (gender: 5 females, 41.67%; age [years]: median 84, range 20; postmortem interval before fixation [h]: median 60, range 74.15). Orienting histomorphologic assessment was done in a hematoxylin-eosin stain. Immunohistochemical labelling of TRPC6 was carried out following a cross-evaluation scheme. TRPC6-immunoreactivity was assessed regarding intensity (semi-quantification, three independent observers) and area (optical threshold method). Explorative statistical analyses were performed using R (inter-rater-reliability: Fleiss' kappa; comparisons: Wilcoxon-Rank-sum-test). RESULTS: Extensive autolysis was found in the liver of one and the biliary samples of three corpses. Extensive liver disease was found in 4 corpses, while 8 corpses only showed age-appropriate degeneration. Only the intrahepatic connective tissue showed no TRPC6-immunoreactivity. Individuals with extensively diseased livers exhibited statistically significantly less TRPC6-immunoreactive area in the bile duct and liver tissue while statistically significant more TRPC6-immunoreactive area in the gallbladder compared to individuals with age-appropriate degeneration of the liver only in the respective organ. CONCLUSION: Age-associated degeneration of the hepatobiliary system is likely to be associated with widespread, homogenous TRPC6-expression. Liver disease potentially influences the distribution of TRPC6-protein within the liver and within the biliary tract in elderly.
Assuntos
Hepatopatias , Canal de Cátion TRPC6 , Idoso , Feminino , Humanos , Cadáver , Expressão Gênica , Hepatopatias/genética , Reprodutibilidade dos Testes , Canal de Cátion TRPC6/genética , Masculino , Idoso de 80 Anos ou maisRESUMO
Intracranial aneurysm (IA) is a frequent cerebrovascular disorder with unclear pathogenesis. The vascular smooth muscle cells (VSMCs) phenotypic switch is essential for IA formation. It has been reported that Ca2+ overload and excessive reactive oxygen species (ROS) are involved in VSMCs phenotypic switch. The transient receptor potential canonical 6 (TRPC6) and NADPH oxidase 4 (NOX4) are the main pathway to participate in Ca2+ overload and ROS production in VSMCs. Ca2+ overload can activate calcineurin (CN), leading to nuclear factor of activated T cell (NFAT) dephosphorylation to regulate the target gene's transcription. We hypothesized that activation of TRPC6-NFATC1 signaling may upregulate NOX4 and involve in VSMCs phenotypic switch contributing to the progression of IA. Our results showed that the expressions of NOX4, p22phox, p47phox, TRPC6, CN and NFATC1 were significantly increased, and VSMCs underwent a significant phenotypic switch in IA tissue and cellular specimens. The VIVIT (NFATC1 inhibitor) and BI-749327 (TRPC6 inhibitor) treatment reduced the expressions of NOX4, p22phox and p47phox and the production of ROS, and significantly improved VSMCs phenotypic switch in IA rats and cells. Consistent results were obtained from IA Trpc6 knockout (Trpc6-/-) mice. Furthermore, the results also revealed that NFATC1 could regulate NOX4 transcription by binding to its promoter. Our findings reveal that interrupting the TRPC6-NFATC1 signaling inhibits NOX4 and improves VSMCs phenotypic switch in IA, and regulating Ca2+ homeostasis may be an important therapeutic strategy for IA.
Assuntos
Aneurisma Intracraniano , Animais , Camundongos , Ratos , Aneurisma Intracraniano/metabolismo , Músculo Liso Vascular/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Fatores de Transcrição NFATC/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/metabolismoRESUMO
AIMS: Brain-derived neurotrophic factor (BDNF) is vital in the pathogenesis of mechanical allodynia with a paucity of reports available regarding diabetic neuropathy pain (DNP). Herein we identified the involvement of BDNF in driving mechanical allodynia in DNP rats via the activation of transient receptor potential canonical 6 (TRPC6) channel. MATERIALS AND METHODS: The DNP rat model was established via streptozotocin (STZ) injection, and allodynia was assessed by paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). The expression profiles of BDNF and TRPC6 in dorsal root ganglia (DRG) and spinal cord were illustrated by immunofluorescence and Western blotting. Intrathecal administration of K252a or TrkB-Fc was performed to inhibit BNDF/TrkB expression, and respective injection of GsMTX-4, BTP2 and TRPC6 antisense oligodeoxynucleotides (TRPC6-AS) was likewise conducted to inhibit TRPC6 expression in DNP rats. Calcium influx in DRG was monitored by calcium imaging. KEY FINDINGS: The time-dependent increase of BDNF and TRPC6 expression in DRG and spinal cord was observed since the 7th post-STZ day, correlated with the development of mechanical allodynia in DNP rats. Intrathecal administration of K252a, TrkB-Fc, GsMTX-4 and BTP2 prevented mechanical allodynia in DNP rats. Pre-treatment of TRPC6-AS reversed the BDNF-induced pain-like responses in DNP rats rather than the naïve rats. In addition, the TRPC6-AS reversed BDNF-induced increase of calcium influx in DRG neurons in DNP rats. SIGNIFICANCE: The intrathecal inhibition of TRPC6 alleviated the BDNF-induced mechanical allodynia in DNP rat model. This finding may validate the application of TRPC6 antagonists as interesting strategy for DNP management.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/complicações , Modelos Animais de Doenças , Hiperalgesia/etiologia , Neuralgia/complicações , Canais de Cátion TRPC/metabolismo , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPC/genéticaRESUMO
Transient receptor potential canonical 6 (TRPC6) channels are non-selective cation channels that are thought to underlie mechano-modulation of calcium signaling in cardiomyocytes. TRPC6 channels are involved in development of cardiac hypertrophy and related calcineurin-nuclear factor of activated T cells (NFAT) signaling. However, the exact location and roles of TRPC6 channels remain ill-defined in cardiomyocytes. We used an expression system based on neonatal rat ventricular myocytes (NRVMs) to investigate the location of TRPC6 channels and their role in calcium signaling. NRVMs isolated from 1- to 2-day-old animals were cultured and infected with an adenoviral vector to express enhanced-green fluorescent protein (eGFP) or TRPC6-eGFP. After 3 days, NRVMs were fixed, immunolabeled, and imaged with confocal and super-resolution microscopy to determine TRPC6 localization. Cytosolic calcium transients at 0.5 and 1 Hz pacing rates were recorded in NRVMs using indo-1, a ratio-metric calcium dye. Confocal and super-resolution microscopy suggested that TRPC6-eGFP localized to the sarcolemma. NRVMs infected with TRPC6-eGFP exhibited higher diastolic and systolic cytosolic calcium concentration as well as increased sarcoplasmic reticulum (SR) calcium load compared to eGFP infected cells. We applied a computer model comprising sarcolemmal TRPC6 current to explain our experimental findings. Altogether, our studies indicate that TRPC6 channels play a role in sarcolemmal and intracellular calcium signaling in cardiomyocytes. Our findings support the hypothesis that upregulation or activation of TRPC6 channels, e.g., in disease, leads to sustained elevation of the cytosolic calcium concentration, which is thought to activate calcineurin-NFAT signaling and cardiac hypertrophic remodeling. Also, our findings support the hypothesis that mechanosensitivity of TRPC6 channels modulates cytosolic calcium transients and SR calcium load.
RESUMO
The induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to model and study Alzheimer's disease (AD) under patient-specific genetic background. The lower expression of transient receptor potential canonical 6 (TRPC6) was associated with AD patients, which might be involved in AD pathogenesis. However, the role of TRPC6 that played in AD process still needs more investigation in patient-relevant neurons. In this study, the iPSCs were generated from peripheral blood cells of sporadic AD patients and efficiently differentiated into mature cortical neurons. These sporadic AD-bearing neurons displayed higher levels of AD pathological markers Aß and phospho-tau, but lower levels of TRPC6, than those of control neurons. Treatment of AD neurons with TRPC6 protein fragment or agonist inhibited the elevation of Aß and phospho-tau. Our results in live AD neurons manifest that the compromised expression of TRPC6 substantially contributed to Aß pathology of sporadic AD, suggesting that targeting TRPC6 could help to develop novel therapeutic strategies for the treatments of AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Canal de Cátion TRPC6/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos , Neurônios/metabolismo , Fenótipo , Canal de Cátion TRPC6/agonistas , Proteínas tau/metabolismoRESUMO
BACKGROUND: Transient receptor potential canonical (TRPC) 6 inhibits Aß in Alzheimer's disease (AD) mouse brain and improves the behavioral performance. AIMS: To evaluate the association of TRPC6 expression in peripheral leucocytes from AD and mild cognitive impairment (MCI) patients and to explore its potential value in early diagnosis of AD. METHODS: TRPC6 mRNA levels in peripheral leucocytes were detected by quantitative real-time PCR. The Spearman correlation test was used to ascertain the associations between TRPC6 and the scores of MMSE, ADL, CSDD, CDR. The Receiver Operating Characteristic (ROC) curve was drawn to evaluate the diagnostic potential of TRPC6 for AD and MCI. RESULTS: There were 108â¯CE, 136 MCI, 164 Con and 60 PD in the study. The expression of TRPC6 mRNA level in peripheral leucocytes was significantly lower: 1) in patients with AD and MCI compared to Con; 2) in AD compared to MCI; 3) in hospitalized AD compared to AD from communities. There was a significantly positive correlation between TRPC6 mRNA and MMSE score (pâ¯=â¯.001, Râ¯=â¯0.327). Significantly inverse correlations were found between TRPC6 and CDR score (pâ¯<â¯0.001, Râ¯=â¯-0.303) as well as between TRPC6 and ADL score (pâ¯=â¯.001, Râ¯=â¯-0.342) for all AD. The area under curve of ROC was 0.881 for the classification of AD, and 0.706 for the classification of MCI, respectively. CONCLUSION: TRPC6 expression is inversely correlated with cognitive performance of AD. TRPC6 in peripheral leucocytes may be a potential biomarker for the diagnosis of AD.
Assuntos
Doença de Alzheimer/metabolismo , Disfunção Cognitiva/metabolismo , Canal de Cátion TRPC6/biossíntese , Idoso , Estudos de Casos e Controles , Diagnóstico Precoce , Feminino , Hospitalização , Humanos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Escalas de Graduação Psiquiátrica/estatística & dados numéricosRESUMO
AIMS: Hypoxic pulmonary vasoconstriction (HPV) redistributes blood flow from poorly ventilated to better aerated areas in the lung, thereby optimizing ventilation-perfusion ratio (V/Q). Pulmonary artery smooth muscle cell (PASMC) contraction in response to hypoxia is triggered by Ca2+ influx via transient receptor potential canonical 6 (TRPC6) cation channels that have translocated to caveolae in the plasma membrane. Since phosphatase and tensin homolog (PTEN) was suggested to regulate TRPC6 in endothelial cells, we aimed to define its role in the hypoxic response of PASMCs and as a putative mediator of HPV. METHODS AND RESULTS: In isolated perfused mouse lungs, smooth muscle specific PTEN deficiency attenuated pulmonary vasoconstriction in response to hypoxia but not to angiotensin II (Ang II). Analogously, siRNA-mediated knock down of PTEN in human PASMC inhibited the hypoxia-induced increase in cytosolic Ca2+ concentration ([Ca2+]i). Co-immunoprecipitation and proximity ligation assays revealed increased interaction of PTEN with TRPC6 in human PASMC and murine lungs in response to hypoxia. In hypoxic PASMC, both PTEN and TRPC6 translocated to caveolae, and this response was blocked by pharmacological inhibition of Rho-associated protein kinase (ROCK) which in parallel prevented PTEN-TRPC6 interaction, hypoxia-induced [Ca2+]i increase, and HPV in PASMC and murine lungs, respectively. CONCLUSION: Our data indicate a novel interplay between ROCK and [Ca2+]i signalling in HPV via PTEN, in that ROCK mediates interaction of PTEN and TRPC6 which then conjointly translocate to caveolae allowing for Ca2+ influx into and subsequent contraction of PASMC.
Assuntos
Hipóxia/metabolismo , Pulmão/irrigação sanguínea , Tensinas/metabolismo , Vasoconstrição/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Hipóxia Celular , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/fisiopatologiaRESUMO
Ischemia-reperfusion injury (IRI) refers to the reperfusion injury caused by the recovery of blood supply of ischemic tissues or organs, which commonly occurs in organ transplantation and other surgical procedures. IRI may cause a series of severe clinical issues, such as delayed graft function, acute kidney injury, myocardial infarction, ischemic stroke and circulatory arrest, etc. These events yield high incidence and fatality. At present, no effective solution has been available. Transient receptor potential canonical 6 (TRPC6), a member of Ca2+ channel family, is highly expressed in multiple types of cells. It may adjust many physiological functions by regulating intracellular Ca2+ concentration, which has become an important target for developing therapeutic drugs for multiple diseases. In this article, research progresses on the introduction and function of TRPC6, the association between TRPC6 and IRI and the therapeutic prospect of TRPC6 targeted drugs in IRI were reviewed, aiming to provide novel insights into the prevention and treatment of IRI during organ transplantation
RESUMO
OBJECTIVE: To study the expression of transient receptor potential canonical-6(TRPC6)channels in endometrial cancer tissues and their role in regulating proliferation of endometrial cancer cells.METHODS: Thirty patients with endometrial cancer who were treated from January 2011 to June 2015 in Henan Provincial People's Hospital and Xuchang People's Hospital were chosen as the study group;the controls group consisted of 24 atypical hyperplasia patients and 28 uterus leiomyoma patients.Molecular biological techniques were used to examine the expression of TRPC6 channels in 30 endometrial cancer specimens,24 atypical hyperplasia specimens and 28 normal endometrial specimens.SKF96365(an inhibitor of TRPC6 channel)and siRNA interference(RNAi)targeting TRPC6 channel were used to block TRPC6 so as to explore the role of TRPC6 channels in regulating the proliferation of endometrial cancer cells by[3 H]thymidine incorporation and cell number.RESULTS: The expression levels of TRPC6 in endometrial cancer were notably elevated than those in the atypical hyperplasia endometrial and normal endometrial tissues. The expression levels of TRPC6 in endometrial cancer vs. the control:mRNA:(0.98±0.56)vs.(0.30±0.24 and0.23±0.13)(P<0.01):protein:(1.22±0.39)vs.(0.75±0.27 and 0.73±0.26)(P<0.01);The expression level of TRPC6in endometrial cancer tissues was not related to the surgical pathological staging, but was related to pathological staging; SKF96365 caused a dosedependent decline in cell amount of HEC-1 A cell. The expression quantity of TRPC6 in whole lysates of the celltransfected with target-TRPC6 small interference RNA(siRNA)was(38.51±6.21)% of that found in the cells transfected with non-silencing RNA;[3 H]thymidine incorporation in HEC-1 A transfected with target-TRPC6 siRNA was also reduced,siRNA inhibited HEC-l A cells proliferation,compared with the cells transfected with non-silencing RNA.CONCLUSION:s TRPC6 channels mignt be closely related to the proliferation of endometrial cancer cells and down regulation of its expression may suppress its development.
RESUMO
Glaucoma is one of the leading causes of visual impairment and blindness worldwide. Of known risk factors for glaucoma, an increased in intraocular pressure is most highly correlated with glaucomatous damage. Irrespective of the cause, apoptosis of the retinal ganglion cells is the eventual outcome. It is widely accepted that glaucoma is a neurodegenerative disease that is strongly correlated with central nervous system disorders, such as Alzheimer's disease. These two disorders also share some similarities in pathogenic mechanisms. Recent studies suggest that the transient receptor potential canonical 6 channel could work together with brain-derived neurotrophic factor to promote neuron survival in brain and retina. In this study, we propose that transient receptor potential canonical 6 may contribute to the pathogenesis of human glaucoma and become a potential therapeutic target.