Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(5): e2306220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37727068

RESUMO

Atomic-scale interface engineering is a prominent strategy to address the large volume expansions and sluggish redox kinetics for reinforcing K-storage. Here, to accelerate charge transport and lower the activation energy, dual carbon-modified interfacial regions are synthesized with high lattice-matching degree, which is formed from a CoSe2 /FeSe2 heterostructure coated onto hollow carbon fibers. State-of-the-art characterization techniques and theoretical analysis, including ex-situ soft X-ray absorption spectroscopy, synchrotron X-ray tomography, ultrasonic transmission mapping, and density functional theory, are conducted to probe local atomic structure evolution, mechanical degradation mechanisms, and ion/electron migration pathways. The results suggest that the heterostructure composed of the same crystal system and space group can sharply regulate the redox kinetics of transition metal selenium and dual carbon-modified approach can tailor physicochemical degradation. Overall, this work presents the design of a stable heterojunction synergistic superior hollow carbon substrate, inspiring a pathway of interface engineering strategy toward high-performance electrode.

2.
Small ; 20(9): e2304390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37845029

RESUMO

Exploring and developing novel strategies for constructing heterostructure electrocatalysts is still challenging for water electrolysis. Herein, a creative etching treatment strategy is adopted to construct NiSe2 /Ni0.85 Se heterostructure. The rich heterointerfaces between NiSe2 and Ni0.85 Se emerge strong electronic interaction, which easily induces the electron transfer from NiSe2 to Ni0.85 Se, and tunes the charge-state of NiSe2 and Ni0.85 Se. In the NiSe2 /Ni0.85 Se heterojunction nanomaterial, the higher charge-state Ni0.85 Se is capable of affording partial electrons to combine with hydrogen protons, inducing the rapid formation of H2 molecule. Accordingly, the lower charge-state NiSe2 in the NiSe2 /Ni0.85 Se heterojunction nanomaterial is more easily oxidized into high valence state Ni3+ during the oxygen evolution reaction (OER) process, which is beneficial to accelerate the mass/charge transfer and enhance the electrocatalytic activities towards OER. Theoretical calculations indicate that the heterointerfaces are conducive to modulating the electronic structure and optimizing the adsorption energy toward intermediate H* during the hydrogen evolution reaction (HER) process, leading to superior electrocatalytic activities. To expand the application of the NiSe2 /Ni0.85 Se-2h electrocatalyst, urea is served as the adjuvant to proceed with the energy-saving hydrogen production and pollutant degradation, and it is proven to be a brilliant strategy.

3.
Small ; 20(22): e2309448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362699

RESUMO

Hydrogen peroxide (H2O2) is a highly value-added and environmental-friendly chemical with various applications. The production of H2O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process. High selectivity Catalysts combining with superior activity are critical for the efficient electrosynthesis of H2O2. Earth-abundant transition metal selenides (TMSs) being discovered as a classic of stable, low-cost, highly active and selective catalysts for electrochemical 2e- ORR. These features come from the relatively large atomic radius of selenium element, the metal-like properties and the abundant reserves. Moreover, compared with the advanced noble metal or single-atom catalysts, the kinetic current density of TMSs for H2O2 generation is higher in acidic solution, which enable them to become suitable catalyst candidates. Herein, the recent progress of TMSs for ORR to H2O2 is systematically reviewed. The effects of TMSs electrocatalysts on the activity, selectivity and stability of ORR to H2O2 are summarized. It is intended to provide an insight from catalyst design and corresponding reaction mechanisms to the device setup, and to discuss the relationship between structure and activity.

4.
Small ; 20(27): e2310530, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38317526

RESUMO

Rechargeable aprotic Li-CO2 batteries have aroused worldwide interest owing to their environmentally friendly CO2 fixation ability and ultra-high specific energy density. However, its practical applications are impeded by the sluggish reaction kinetics and discharge product accumulation during cycling. Herein, a flexible composite electrode comprising CoSe2 nanoparticles embedded in 3D carbonized melamine foam (CoSe2/CMF) for Li-CO2 batteries is reported. The abundant CoSe2 clusters can not only facilitate CO2 reduction/evolution kinetics but also serve as Li2CO3 nucleation sites for homogeneous discharge product growth. The CoSe2/CMF-based Li-CO2 battery exhibits a large initial discharge capacity as high as 5.62 mAh cm-2 at 0.05 mA cm-2, a remarkably small voltage gap of 0.72 V, and an ultrahigh energy efficiency of 85.9% at 0.01 mA cm-2, surpassing most of the noble metal-based catalysts. Meanwhile, the battery demonstrates excellent cycling stability of 1620 h (162 cycles) at 0.02 mA cm-2 with an average overpotential of 0.98 V and energy efficiency of 85.4%. Theoretical investigations suggest that this outstanding performance is attributed to the suitable CO2/Li adsorption and low Li2CO3 decomposition energy. Moreover, flexible Li-CO2 pouch cell with CoSe2/CMF cathode displays stable power output under different bending deformations, showing promising potential in wearable electronic devices.

5.
Molecules ; 29(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39064889

RESUMO

This study investigated the structural and electrochemical characteristics of binary and quaternary systems comprising nickel, cobalt, and iron selenides. The powders were obtained via a solvothermal route. X-ray diffraction (XRD) and Raman spectroscopy revealed significant phase diversity. It was observed that increasing the proportion of d-block metals in quaternary systems enhances structural entropy, potentially leading to more homogeneous and stable structures dominated by energetically preferred components such as nickel. The electrochemical analysis indicated that the binary system exhibited a reversible redox reaction, with nickel selenide-based samples demonstrating the highest electrochemically active surface area. Quaternary systems display varying degrees of electrochemical stability. An equal contribution of nickel, cobalt, and iron appears beneficial in achieving stable electrodes. This research contributes to understanding the relationship between transition metal selenides' structural, morphological, and electrochemical properties, providing insights into their potential applications in hydrogen generation.

6.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999035

RESUMO

In recent years, sodium-ion batteries (SIBs) have gained a foothold in specific applications related to lithium-ion batteries, thanks to continuous breakthroughs and innovations in materials by researchers. Commercial graphite anodes suffer from small interlayer spacing (0.334 nm), limited specific capacity (200 mAh g-1), and low discharge voltage (<0.1 V), making them inefficient for high-performance operation in SIBs. Hence, the current research focus is on seeking negative electrode materials that are compatible with the operation of SIBs. Many studies have been reported on the modification of transition metal selenides as anodes in SIBs, mainly targeting the issue of poor cycling life attributed to the volume expansion of the material during sodium-ion extraction and insertion processes. However, the intrinsic electronic structure of transition metal selenides also influences electron transport and sodium-ion diffusion. Therefore, modulating their electronic structure can fundamentally improve the electron affinity of transition metal selenides, thereby enhancing their rate performance in SIBs. This work provides a comprehensive review of recent strategies focusing on the modulation of electronic structures and the construction of heterogeneous structures for transition metal selenides. These strategies effectively enhance their performance metrics as electrodes in SIBs, including fast charging, stability, and first-cycle coulombic efficiency, thereby facilitating the development of high-performance SIBs.

7.
Small ; 19(15): e2207975, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36631278

RESUMO

Transition metal selenides anodes with fast reaction kinetics and high theoretical specific capacity are expected to solve mismatched kinetics between cathode and anode in Li-ion capacitors. However, transition metal selenides face great challenges in the dissolution and shuttle problem of lithium selenides, which is the same as Li-Se batteries. Herein, inspired by the density functional theory calculations, heterogeneous can enhance the adsorption of Li2 Se relative to single component selenide electrodes, thus inhibiting the dissolution and shuttle effect of Li2 Se. A heterostructure material (denoted as CoSe2 /SnSe) with the ability to evolve continuously (CoSe2 /SnSe→Co/Sn→Co/Li13 Sn5 ) is successfully designed by employing CoSnO3 -MOF as a precursor. Impressively, CoSe2 /SnSe heterostructure material delivers the ultrahigh reversible specific capacity of 510 mAh g-1 after 1000 cycles at the high current density of 4 A g-1 . In situ XRD reveals the continuous evolution of the interface based on the transformation and alloying reactions during the charging and discharging process. Visualizations of in situ disassembly experiments demonstrate that the continuously evolving interface inhibits the shuttle of Li2 Se. This research proposes an innovative approach to inhibit the dissolution and shuttling of discharge intermediates (Li2 Se) of metal selenides, which is expected to be applied to metal sulfides or Li-Se and Li-S energy storage systems.

8.
Nanotechnology ; 34(18)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36669193

RESUMO

To enhance the performance of transition metal chalcogenide composite electrode material, a key point is a composite design and preparation based on the synergistic effect between the oxide and selenide materials. With a facile 'one step template-annealing' step, Ni3Se4, Ni0.6Zn0.4O and ZnO are simultaneously synthesized, by 500 °C annealing. With the increase of annealing temperature from 350 °C to 600 °C, nickel selenides change from NiSe2to Ni3Se4to NiSe. The charge storage capacity increases first and then decreases with the increase of annealing temperature, and the 500 °C annealing obtained three compound composite Ni3Se4/Ni0.6Zn0.4O/ZnO (NNZ-500) nanoparticle material displayed a high specific capacitance of 1089.2 F g-1at 1 A g-1, and excellent cycle stability of 99.8% capacitance retention after 2000 cycles at 5 A g-1. Moreover, an asymmetric supercapacitor was assembled with NNZ-500 as the positive electrode material and activated carbon as the negative electrode material. This kind of asymmetric supercapacitor demonstrated a high energy density of 53.4 Wh kg-1at 819.0 W kg-1, and cycle stability with 98.6% capacitance retention after 2000 cycles. This material preparation approach provides great potential for the future development of high performance transition metal composite electrode materials in energy storage applications.

9.
Nanotechnology ; 33(24)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35263734

RESUMO

Inferior electrical conductivity and large volume variation are two disadvantages of metal selenides. In this work, we have designed a core-shell structure of FeSe2@C composite with low cost using facile hydrothermal method. The FeSe2particles as the 'core' and the carbon layer as the 'shell' displayed good synergistic effect that attributed to alleviate volume expansion of electrode and improving the electrical conductivity, which achieved the fast potassium storage. The core-shell structural FeSe2@C electrode achieved 286 mA h g-1at 1 A g-1over 1000 cycles with 99.8% coulombic efficiency and delivered excellent rate capacity with 273 mA h g-1at 2 A g-1, which was ascribed to dispersed FeSe2particles and the strong carbon shell coating. This work will provide the basis for the further development of the application of metal selenides in the field of flexible electrodes.

10.
Chemistry ; 27(11): 3745-3752, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33135204

RESUMO

Sodium- and potassium-ion batteries have attracted intensive attention recently as low-cost alternatives to lithium-ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g-1 at a current rate of 0.1 A g-1 and a remarkable rate performance with a capacity of 525 mA h g-1 at 20 A g-1 . As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g-1 at 0.4 A g-1 . Even at a high current rate of 5 A g-1 , a discharge capacity of 322 mA h g-1 can be achieved, which is among the best high-rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether-based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage.

11.
J Colloid Interface Sci ; 676: 795-807, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39067215

RESUMO

Localized surface plasmon resonance (LSPR) effect plays a crucial role in the field of solar energy utilization. In this work, we successfully prepared a Cu2-xSe/ZnSe S-scheme heterojunction with a broad-spectrum response using the hot-injection and low-temperature water bath method. Importantly, we demonstrated that the photothermal effect induced by the LSPR of nonstoichiometric Cu2-xSe can significantly improve the slow kinetics of water splitting, resulting in an apparent activation energy reduction from 50.1 to 28.7 kJ·mol-1. This improvement is responsible for achieving the highest photocatalytic H2 evolution rate of 63.6 mmol·g-1·h-1 over 2.7 % Cu2-xSe/ZnSe under the wavelength ranged from 200 to 2500 nm, which is 3.4 and 5.6 times higher than that of ZnSe and Cu2-xSe, respectively. Furthermore, the composite exhibits a remarkable H2 production rate of 0.108 mmol·g-1·h-1 under near-infrared spectroscopy (800<λ<2500 nm), while ZnSe shows limited capability in H2 releasing. Additionally, Cu2-xSe/ZnSe demonstrates distinct photocurrent response when λ > 800 nm. The enhanced performance in H2 evolution can be attributed to the synergistic effect of LSPR-induced light absorption and S-scheme heterojunction, which not only expands the light absorption range to the near-infrared region but also facilitates hot electron injection, charge carrier separation and transfer, leading to a faster surface reaction kinetics. This study provides an effective approach for designing a broad-spectrum light responsive non-precious metal-based photothermal-assisted photocatalytic system.

12.
J Colloid Interface Sci ; 658: 32-42, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091796

RESUMO

Transition metal chalcogenides (TMCs) are recognized as highly efficient electrocatalysts and have wide applications in the field of hydrogen production by electrolysis of water, but the real catalytic substances and catalytic processes of these catalysts are not clear. The species evolution of Mo and Se during alkaline hydrogen evolution was investigated by constructing MoSe2@CoSe2 heterostructure. The real-time evolution of Mo and Se in MoSe2@CoSe2 was monitored using in situ Raman spectroscopy to determine the origin of the activity. Mo and Se in MoSe2@CoSe2 were dissolved in the form of MoO42- and SeO32-, respectively, and subsequently re-adsorbed and polymerized on the electrode surface to form new species Mo2O72- and SeO42-. Theoretical calculations show that adsorption of Mo2O72- and SeO42- can significantly enhance the HER catalytic activity of Co(OH)2. The addition of additional MoO42- and SeO32- to the electrolyte with Co(OH)2 electrodes both enhances its HER activity and promotes its durability. This study helps to deepen our insight into mechanisms involved in the structural changes of catalyst surfaces and offers a logical basis for revealing the mechanism of the influence of species evolution on catalytic performance.

13.
J Colloid Interface Sci ; 657: 402-413, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056045

RESUMO

The key to the innovation of sodium-ion batteries (SIBs) is to find efficient sodium-storage electrode. Here, metal Mo doping of NiSe2 is proposed by modified electrospinning strategy followed by in situ conversion process. The Mo-NiSe2 anchoring on hollow carbon nanofibers (HCNFs) would make full use of the multi-channel HCNFs in the inner layer and the active sites of Mo-NiSe2 in the outer layer, which plays an important role in buffering the volume stress of Na+ (de)insertion and reducing the adsorption energy barrier of Na+. Innovatively, it is proposed to jointly regulate the SIBs performance of NiSe2 by both metal atom doping and interface effects, thereby adjusting the sodium ion adsorption barrier of NiSe2. The Mo-NiSe2@HCNFs exhibits remarkable performance in SIBs, demonstrating a high specific capacity of 396 mAh/g after 100 cycles at 1 A/g. Moreover, it maintains outstanding cycling stability, retaining 77.6 % of its capacity (211 mAh/g) even after 1000 cycles at 10 A/g. This comprehensive electrochemical performances are due to the structural stability and outstanding electronic conductance of the Mo-NiSe2@HCNFs, as evidenced by the diffusion analysis and ex situ charge-discharge process characterization. Furthermore, coupled with the Na3V2(PO4)2O2F cathodes, the full cell also achieves a high energy density of 123 Wh kg-1. The theoretical calculation of the hypervalent Mo doing further proves the benefit of its Na+ adsorption and denser conduction band distribution. This study provides a reference for the construction of transition metal selenide via doping and interface engineering in sodium storage.

14.
J Colloid Interface Sci ; 665: 355-364, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38531280

RESUMO

Transition metal selenides (TMSs) stand out as a promising anode material for sodium-ion batteries (SIBs) owing to their natural resources and exceptional sodium storage capacity. Despite these advantages, their practical application faces challenges, such as poor electronic conductivity, sluggish reaction kinetics and severe agglomeration during electrochemical reactions, hindering their effective utilization. Herein, the dual-carbon-confined CoSe2/FeSe2@NC@C nanocubes with heterogeneous structure are synthesized using ZIF-67 as the template by ion exchange, resorcin-formaldehyde (RF) coating, and subsequent in situ carbonization and selenidation. The N-doped porous carbon promotes rapid electrolyte penetration and minimizes the agglomeration of active materials during charging and discharging, while the RF-derived carbon framework reduces the cycling stress and keeps the integrity of the material structure. More importantly, the built-in electric field at the heterogeneous boundary layer drives electron redistribution, optimizing the electronic structure and enhancing the reaction kinetics of the anode material. Based on this, the nanocubes of CoSe2/FeSe2@NC@C exhibits superb sodium storage performance, delivering a high discharge capacity of 512.6 mA h g-1 at 0.5 A g-1 after 150 cycles and giving a discharge capacity of 298.2 mA h g-1 at 10 A g-1 with a CE close to 100.0 % even after 1000 cycles. This study proposes a viable method to synthesize advanced anodes for SIBs by a synergy effect of heterogeneous interfacial engineering and a carbon confinement strategy.

15.
J Colloid Interface Sci ; 658: 827-835, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154245

RESUMO

Transition metal selenides are promising anode candidates for sodium ion batteries (SIBs) because of their higher theoretical capacity and conductivity than metal oxides. However, the disadvantages of severe capacity degradation and poor magnification performance greatly limit their commercial applications. Herein, we have developed a new hollow bimetallic selenides (CoSe2-ZnSe)@reduced graphene oxide (rGO) composite with abundant heterointerfaces. The rGO could not only alleviate the volume variations of hollow CoSe2-ZnSe microspheres during cycling, but also improve the conductivity of composite. The presence of the heterointerfaces could help to accelerate ionic diffusion kinetics and improve electron transfer, resulting in the improved sodium storage performance. As an advanced anode for SIBs, the CoSe2-ZnSe@rGO exhibits an enhanced initial coulombic efficiency of 75.1% (65.2% of CoSe2@rGO), extraordinary rate capability, and outstanding cycling stability (540.3 mAh/g at 0.2 A/g after 150 cycles, and 395.2 mAh/g at 1 A/g after 600 cycles). The electrochemical mechanism was also studied by kinetic analysis, showing that the charging/discharging process of CoSe2-ZnSe@rGO is mostly related to a capacitive-controlled behavior.

16.
J Colloid Interface Sci ; 650(Pt A): 358-368, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413870

RESUMO

Transition metal selenides (TMSs) are viewed as a prospective high-capacity electrode material for asymmetric supercapacitors (ASCs). However, the inability to expose sufficient active sites due to the limitation of the area involved in the electrochemical reaction severely limits their inherent supercapacitive properties. Herein, a self-sacrificing template strategy is developed to prepare self-supported CuCoSe (CuCoSe@rGO-NF) nanosheet arrays by in situ construction of copper-cobalt bimetallic organic framework (CuCo-MOF) on rGO-modified nickel foam (rGO-NF) and rational design of Se2- exchange process. Nanosheet arrays with high specific surface area are considered to be ideal platforms for accelerating electrolyte penetration and exposing rich electrochemical active sites. As a result, the CuCoSe@rGO-NF electrode delivers a high specific capacitance of 1521.6 F/g at 1 A/g, good rate performance and an excellent capacitance retention of 99.5% after 6000 cycles. The assembled ASC device has a high energy density of 19.8 Wh kg-1 at 750 W kg-1 and an ideal capacitance retention of 86.2% after 6000 cycles. This proposed strategy offers a viable strategy for designing and constructing electrode materials with superior energy storage performance.

17.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903744

RESUMO

Lithium-sulfur batteries with high theoretical energy density and cheap cost can meet people's need for efficient energy storage, and have become a focus of the research on lithium-ion batteries. However, owing to their poor conductivity and "shuttle effect", lithium-sulfur batteries are difficult to commercialize. In order to solve this problem, herein a polyhedral hollow structure of cobalt selenide (CoSe2) was synthesized by a simple one-step carbonization and selenization method using metal-organic bone MOFs (ZIF-67) as template and precursor. CoSe2 is coated with conductive polymer polypyrrole (PPy) to settle the matter of poor electroconductibility of the composite and limit the outflow of polysulfide compounds. The prepared CoSe2@PPy-S composite cathode shows reversible capacities of 341 mAh g-1 at 3 C, and good cycle stability with a small capacity attenuation rate of 0.072% per cycle. The structure of CoSe2 can have certain adsorption and conversion effects on polysulfide compounds, increase the conductivity after coating PPy, and further enhance the electrochemical property of lithium-sulfur cathode material.

18.
Materials (Basel) ; 16(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512388

RESUMO

Oxygen evolution reaction is a momentous part of electrochemical energy storage and conversion devices such as rechargeable metal-air batteries. It is particularly urgent to develop low-cost and efficient electrocatalysts for oxygen evolution reactions. As a potential substitute for noble metal electrocatalysts, transition metal selenides still prove challenging in improving the activity of oxygen evolution reaction and research into reaction intermediates. In this study, a simple one-step solvothermal method was used to prepare a polymetallic compound carbon matrix composite (Co9Se8/Ni3Se4/Fe3O4@C) with a multilayered nanosheets structure. It exhibited good OER activity in an alkaline electrolyte solution, with an overpotential of 268 mV at 10 mA/cm2. In addition, this catalyst also showed excellent performance in the 24 h stability test. The composite presents a multi-layer sheet structure, which effectively improves the contact between the active site and the electrolyte. The selenide formed by Ni and Co has a synergistic effect, and Fe3O4 and Co9Se8 form a heterojunction structure which can effectively improve the reaction activity by initiating the electronic coupling effect through the interface modification. In addition, carbon quantum dots have rich heteroatoms and electron transferability, which improves the electrochemical properties of the composites. This work provides a new strategy for the preparation of highly efficient OER electrocatalysts utilizing the multi-metal synergistic effect.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36892829

RESUMO

Copper cobalt selenide, CuCo2Se4, has been identified as an efficient catalyst for electrocatalytic CO2 reduction, exhibiting high selectivity for carbon-rich and value-added products. Achieving product selectivity is one of the primary challenges for CO2 reduction reactions, and the catalyst surface plays a pivotal role in determining the reaction pathway and, more importantly, the intermediate adsorption kinetics leading to C1- or C2+-based products. In this research, the catalyst surface was designed to optimize the adsorption of the intermediate CO (carbonyl) group on the catalytic site such that its dwell time on the surface was long enough for further reduction to carbon-rich products but not strong enough for surface passivation and poisoning. CuCo2Se4 was synthesized through hydrothermal method, and the assembled electrode showed the electrocatalytic reduction of CO2 at various applied potentials ranging from -0.1 to -0.9 V vs RHE. More importantly, it was observed that the CuCo2Se4-modified electrode could produce exclusive C2 products such as acetic acid and ethanol with 100% faradaic efficiency at a lower applied potential (-0.1 to -0.3 V), while C1 products such as formic acid and methanol were obtained at higher applied potentials (-0.9 V). Such high selectivity and preference for acetic acid and ethanol formation highlight the novelty of this catalyst. The catalyst surface was also probed through density functional theory (DFT) calculations, and the high selectivity for C2 product formation could be attributed to the optimal CO adsorption energy on the catalytic site. It was further estimated that the Cu site showed a better catalytic activity than Co; however, the presence of neighboring Co atoms with the residual magnetic moment on the surface and subsurface layers influenced the charge density redistribution on the catalytic site after intermediate CO adsorption. In addition to CO2 reduction, this catalytic site was also active for alcohol oxidation producing formic or acetic acid from methanol or ethanol, respectively, in the anodic chamber. This report not only illustrates the highly efficient catalytic activity of CuCo2Se4 for CO2 reduction with high product selectivity but also offers a proper insight of the catalyst surface design and how to obtain such high selectivity, thereby providing knowledge that can be transformative for the field.

20.
J Colloid Interface Sci ; 615: 256-264, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35134480

RESUMO

Electrochemical water splitting, which is considered to be one of the fruitful strategies to achieve efficient and pollution-free hydrogen production, has been deemed as a key technology to achieve renewable energy conversion. Oxygen evolution reaction (OER) is a decisive step in water splitting. Slow kinetics seriously limits the effective utilization of energy thus it is extremely urgent to develop electrocatalysts that can effectively reduce the reaction energy barrier thus accelerate OER kinetics. Here, Mn-Co0.85Se/NiSe2/NF nanosheets with 3D folded structure was assembled on Ni foam by electrodeposition and vapor-deposition method. Mn-Co0.85Se/NiSe2/NF can achieve a current density of 10 mA cm-2 with only 175 mV overpotential in an alkaline environment of 1 M KOH, which is much lower than other reported catalysts. In addition, catalyst Mn-Co0.85Se/NiSe2/NF also performed well in long-term stability tests. Through the synergy of polymetallic, the improvement of catalyst surface energy together with the tuning of electronic structure and the optimization of conductivity can be realized. This work may provide a feasible strategy for the design of efficient selenide-based oxygen evolution reaction catalysts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa