Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
Mol Cell ; 84(18): 3545-3563.e25, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39260367

RESUMO

Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translation. Nevertheless, a lack of technologies to enrich RAPs across sample types has prevented systematic analysis of RAP identities, dynamics, and functions. We have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including Dhx30 and Llph, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development linked to the translation of genes with long coding sequences. In addition, we showed that RAPIDASH can identify ribosome changes in cancer cells. Finally, we characterized ribosome composition remodeling during immune cell activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs in multiple cell types, tissues, and stimuli and is adaptable to characterize ribosome remodeling in several contexts.


Assuntos
Macrófagos , Proteínas Ribossômicas , Ribossomos , Animais , Ribossomos/metabolismo , Ribossomos/genética , Camundongos , Humanos , Macrófagos/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Biossíntese de Proteínas , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Regulação da Expressão Gênica no Desenvolvimento , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL
2.
Mol Cell ; 84(14): 2682-2697.e6, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38996576

RESUMO

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.


Assuntos
Microscopia Crioeletrônica , Glicina Hidroximetiltransferase , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Humanos , RNA/metabolismo , RNA/genética , Serina/metabolismo , Regulação Alostérica , Ligação Proteica , Filogenia , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Glicina/metabolismo , Glicina/química , Sítios de Ligação
3.
Genes Dev ; 36(15-16): 916-935, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36175033

RESUMO

Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.


Assuntos
Células-Tronco Adultas , Isoformas de RNA , Regiões 3' não Traduzidas/genética , Células-Tronco Adultas/metabolismo , Animais , Masculino , Poliadenilação , Isoformas de Proteínas/genética , Isoformas de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Genes Dev ; 36(3-4): 108-132, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193946

RESUMO

With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.


Assuntos
Biossíntese de Proteínas , Vírus , Animais , Interações Hospedeiro-Patógeno/genética , Estabilidade de RNA/genética , Ribossomos/genética , Vírus/genética , Vírus/metabolismo
5.
Mol Cell ; 81(19): 3904-3918.e6, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34375581

RESUMO

Polyamines, small organic polycations, are essential for cell viability, and their physiological levels are homeostatically maintained by post-transcriptional regulation of key biosynthetic enzymes. In addition to de novo synthesis, cells can also take up polyamines; however, identifying cellular polyamine transporters has been challenging. Here we show that the S. cerevisiae HOL1 mRNA is under translational control by polyamines, and we reveal that the encoded membrane transporter Hol1 is a high-affinity polyamine transporter and is required for yeast growth under limiting polyamine conditions. Moreover, we show that polyamine inhibition of the translation factor eIF5A impairs translation termination at a Pro-Ser-stop motif in a conserved upstream open reading frame on the HOL1 mRNA to repress Hol1 synthesis under conditions of elevated polyamines. Our findings reveal that polyamine transport, like polyamine biosynthesis, is under translational autoregulation by polyamines in yeast, highlighting the extensive control cells impose on polyamine levels.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Poliaminas/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Fases de Leitura Aberta , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fator de Iniciação de Tradução Eucariótico 5A
6.
Mol Cell ; 81(11): 2403-2416.e5, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33852892

RESUMO

The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ciclo Celular/química , Fator de Iniciação 4E em Eucariotos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteína Regulatória Associada a mTOR/química , Serina-Treonina Quinases TOR/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Homologia Estrutural de Proteína , Especificidade por Substrato , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
Mol Cell ; 79(4): 546-560.e7, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32589964

RESUMO

Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.


Assuntos
Complexos Multiproteicos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Códon de Iniciação , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Fatores de Iniciação de Peptídeos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Genes Dev ; 33(13-14): 871-885, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171704

RESUMO

Aberrant translation initiation at non-AUG start codons is associated with multiple cancers and neurodegenerative diseases. Nevertheless, how non-AUG translation may be regulated differently from canonical translation is poorly understood. Here, we used start codon-specific reporters and ribosome profiling to characterize how translation from non-AUG start codons responds to protein synthesis inhibitors in human cells. These analyses surprisingly revealed that translation of multiple non-AUG-encoded reporters and the endogenous GUG-encoded DAP5 (eIF4G2/p97) mRNA is resistant to cycloheximide (CHX), a translation inhibitor that severely slows but does not completely abrogate elongation. Our data suggest that slowly elongating ribosomes can lead to queuing/stacking of scanning preinitiation complexes (PICs), preferentially enhancing recognition of weak non-AUG start codons. Consistent with this model, limiting PIC formation or scanning sensitizes non-AUG translation to CHX. We further found that non-AUG translation is resistant to other inhibitors that target ribosomes within the coding sequence but not those targeting newly initiated ribosomes. Together, these data indicate that ribosome queuing enables mRNAs with poor initiation context-namely, those with non-AUG start codons-to be resistant to pharmacological translation inhibitors at concentrations that robustly inhibit global translation.


Assuntos
Códon de Iniciação/genética , Resistência a Múltiplos Medicamentos/genética , Ribossomos/genética , Elongação da Transcrição Genética/efeitos dos fármacos , Cicloeximida/farmacologia , Fator de Iniciação Eucariótico 4G/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Células HEK293 , Células HeLa , Humanos , Inibidores da Síntese de Proteínas/farmacologia
9.
EMBO J ; 41(16): e110501, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35791631

RESUMO

Proteostasis is essential for cellular survival and particularly important for highly specialised post-mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R-like endoplasmic reticulum (ER) kinase (PERK)-mediated phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type-specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK-deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK-deficient neurons. Haem-regulated inhibitor (HRI) mediates p-eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back-up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.


Assuntos
Fator de Iniciação 2 em Eucariotos , eIF-2 Quinase , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Neurônios/metabolismo , Fosforilação , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
10.
EMBO J ; 41(8): e109823, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35315941

RESUMO

Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.


Assuntos
Neoplasias , Biossíntese de Proteínas , Carcinogênese , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Mensageiro/metabolismo , Microambiente Tumoral
11.
J Cell Sci ; 137(12)2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940347

RESUMO

Some chemotherapy drugs modulate the formation of stress granules (SGs), which are RNA-containing cytoplasmic foci contributing to stress response pathways. How SGs mechanistically contribute to pro-survival or pro-apoptotic functions must be better defined. The chemotherapy drug lomustine promotes SG formation by activating the stress-sensing eIF2α kinase HRI (encoded by the EIF2AK1 gene). Here, we applied a DNA microarray-based transcriptome analysis to determine the genes modulated by lomustine-induced stress and suggest roles for SGs in this process. We found that the expression of the pro-apoptotic EGR1 gene was specifically regulated in cells upon lomustine treatment. The appearance of EGR1-encoding mRNA in SGs correlated with a decrease in EGR1 mRNA translation. Specifically, EGR1 mRNA was sequestered to SGs upon lomustine treatment, probably preventing its ribosome translation and consequently limiting the degree of apoptosis. Our data support the model where SGs can selectively sequester specific mRNAs in a stress-specific manner, modulate their availability for translation, and thus determine the fate of a stressed cell.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce , Lomustina , RNA Mensageiro , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Lomustina/farmacologia , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Apoptose/efeitos dos fármacos , Antineoplásicos Alquilantes/farmacologia
12.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032088

RESUMO

Heart development is a complex process that requires asymmetric positioning of the heart, cardiac growth and valve morphogenesis. The mechanisms controlling heart morphogenesis and valve formation are not fully understood. The pro-convertase FurinA functions in heart development across vertebrates. How FurinA activity is regulated during heart development is unknown. Through computational analysis of the zebrafish transcriptome, we identified an RNA motif in a variant FurinA transcript harbouring a long 3' untranslated region (3'UTR). The alternative 3'UTR furina isoform is expressed prior to organ positioning. Somatic deletions in the furina 3'UTR lead to embryonic left-right patterning defects. Reporter localisation and RNA-binding assays show that the furina 3'UTR forms complexes with the conserved RNA-binding translational repressor, Ybx1. Conditional ybx1 mutant embryos show premature and increased Furin reporter expression, abnormal cardiac morphogenesis and looping defects. Mutant ybx1 hearts have an expanded atrioventricular canal, abnormal sino-atrial valves and retrograde blood flow from the ventricle to the atrium. This is similar to observations in humans with heart valve regurgitation. Thus, the furina 3'UTR element/Ybx1 regulon is important for translational repression of FurinA and regulation of heart development.


Assuntos
Regulon , Peixe-Zebra , Animais , Humanos , Regiões 3' não Traduzidas , Regulon/genética , Morfogênese/genética , Valvas Cardíacas , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo
13.
RNA ; 30(8): 1041-1057, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38697667

RESUMO

DDX3X regulates the translation of a subset of human transcripts containing complex 5' untranslated regions (5' UTRs). In this study, we developed the helicase activity reporter for translation (HART), which uses DDX3X-sensitive 5' UTRs to measure DDX3X-mediated translational activity in cells. To directly measure RNA structure in DDX3X-dependent mRNAs, we used SHAPE-MaP to determine the secondary structures present in DDX3X-sensitive 5' UTRs and then used HART to investigate how sequence alterations influence DDX3X sensitivity. Additionally, we identified residues 38-44 as potential mediators of DDX3X's interaction with the translational machinery. HART revealed that both DDX3X's association with the translational machinery and its helicase activity are required for its function in promoting the translation of DDX3X-sensitive 5' UTRs. These findings suggest DDX3X plays a crucial role in regulating translation through its interaction with the translational machinery during ribosome scanning and establish the HART reporter as a robust, lentivirally encoded, colorimetric measurement of DDX3X-dependent translation in cells.


Assuntos
Regiões 5' não Traduzidas , RNA Helicases DEAD-box , Genes Reporter , Biossíntese de Proteínas , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células HEK293 , Ligação Proteica
14.
Mol Cell ; 70(5): 868-880.e10, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861158

RESUMO

Toxin-antitoxin systems are widely distributed genetic modules that regulate growth and persistence in bacteria. Many systems, including E. coli MazEF, include toxins that are endoribonucleases, but the full set of targets for these toxins remains poorly defined. Previous studies on a limited set of transcripts suggested that MazF creates a pool of leaderless mRNAs that are preferentially translated by specialized ribosomes created through MazF cleavage of mature 16S rRNA. Here, using paired-end RNA sequencing (RNA-seq) and ribosome profiling, we provide a comprehensive, global analysis of MazF cleavage specificity and its targets. We find that MazF cleaves most transcripts at multiple sites within their coding regions, with very few full-length, leaderless mRNAs created. Additionally, our results demonstrate that MazF does not create a large pool of specialized ribosomes but instead rapidly disrupts ribosome biogenesis by targeting both ribosomal protein transcripts and rRNA precursors, helping to inhibit cell growth.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/biossíntese , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Proteínas de Ligação a DNA/genética , Endorribonucleases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Análise de Sequência de RNA
15.
Mol Cell ; 71(2): 229-243.e11, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029003

RESUMO

Limitation for amino acids is thought to regulate translation in mammalian cells primarily by signaling through the kinases mTORC1 and GCN2. We find that a selective loss of arginine tRNA charging during limitation for arginine regulates translation through ribosome pausing at two of six arginine codons. Surprisingly, limitation for leucine, an essential and abundant amino acid in protein, results in little or no ribosome pausing. Chemical and genetic perturbation of mTORC1 and GCN2 signaling revealed that their robust response to leucine limitation prevents ribosome pausing, while an insufficient response to arginine limitation leads to loss of tRNA charging and ribosome pausing. Ribosome pausing decreases protein production and triggers premature ribosome termination without reducing mRNA levels. Together, our results suggest that amino acids that are not optimally sensed by the mTORC1 and GCN2 pathways still regulate translation through an evolutionarily conserved mechanism based on codon-specific ribosome pausing.


Assuntos
Fator de Iniciação 2 em Eucariotos/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Biossíntese de Proteínas/fisiologia , Aminoácidos/metabolismo , Animais , Arginina/metabolismo , Códon/metabolismo , Leucina/metabolismo , Mamíferos/genética , Elongação Traducional da Cadeia Peptídica/genética , Elongação Traducional da Cadeia Peptídica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Proc Natl Acad Sci U S A ; 120(7): e2212212120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745802

RESUMO

During vertebrate embryogenesis, hematopoietic stem and progenitor cell (HSPC) production through endothelial-to-hematopoietic transition requires suitable developmental signals, but how these signals are accurately regulated remains incompletely understood. Cytoplasmic polyadenylation, which is one of the posttranscriptional regulations, plays a crucial role in RNA metabolism. Here, we report that Cpeb1b-mediated cytoplasmic polyadenylation is important for HSPC specification by translational control of Hedgehog (Hh) signaling during zebrafish early development. Cpeb1b is highly expressed in notochord and its deficiency results in defective HSPC production. Mechanistically, Cpeb1b regulates hemogenic endothelium specification by the Hedgehog-Vegf-Notch axis. We demonstrate that the cytoplasmic polyadenylation element motif-dependent interaction between Cpeb1b and shha messenger RNA (mRNA) in the liquid-like condensates, which are induced by Pabpc1b phase separation, is required for cytoplasmic polyadenylation of shha mRNA. Intriguingly, the cytoplasmic polyadenylation regulates translation but not stability of shha mRNA, which further enhances the Shha protein level and Hh signal transduction. Taken together, our findings uncover the role of Cpeb1b-mediated cytoplasmic polyadenylation in HSPC development and provide insights into how posttranscriptional regulation can direct developmental signals with high fidelity to translate them into cell fate transition.


Assuntos
Poliadenilação , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Hedgehog/metabolismo , Hematopoese/genética
17.
Proc Natl Acad Sci U S A ; 120(25): e2300008120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307456

RESUMO

mRNA translation initiation plays a critical role in learning and memory. The eIF4F complex, composed of the cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffolding protein eIF4G, is a pivotal factor in the mRNA translation initiation process. eIF4G1, the major paralogue of the three eIF4G family members, is indispensable for development, but its function in learning and memory is unknown. To study the role of eIF4G1 in cognition, we used an eIF4G1 haploinsufficient (eIF4G1-1D) mouse model. The axonal arborization of eIF4G1-1D primary hippocampal neurons was significantly disrupted, and the mice displayed impairment in hippocampus-dependent learning and memory. Translatome analysis showed that the translation of mRNAs encoding proteins of the mitochondrial oxidative phosphorylation (OXPHOS) system was decreased in the eIF4G1-1D brain, and OXPHOS was decreased in eIF4G1-silenced cells. Thus, eIF4G1-mediated mRNA translation is crucial for optimal cognitive function, which is dependent on OXPHOS and neuronal morphogenesis.


Assuntos
Fator de Iniciação Eucariótico 4G , Fosforilação Oxidativa , Animais , Camundongos , RNA Mensageiro , Iniciação Traducional da Cadeia Peptídica , Morfogênese , DNA Helicases
18.
EMBO J ; 40(11): e104123, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33511665

RESUMO

Upstream open reading frames (uORFs) are known to negatively affect translation of the downstream ORF. The regulatory proteins involved in relieving this inhibition are however poorly characterized. In response to cellular stress, eIF2α phosphorylation leads to an inhibition of global protein synthesis, while translation of specific factors such as CHOP is induced. We analyzed a 105-nt inhibitory uORF in the transcript of human CHOP (huORFchop ) and found that overexpression of the zebrafish or human ENDOU poly(U)-endoribonuclease (Endouc or ENDOU-1, respectively) increases CHOP mRNA translation also in the absence of stress. We also found that Endouc/ENDOU-1 binds and cleaves the huORFchop transcript at position 80G-81U, which induces CHOP translation independently of phosphorylated eIF2α. However, both ENDOU and phospho-eIF2α are nonetheless required for maximal translation of CHOP mRNA. Increased levels of ENDOU shift a huORFchop reporter as well as endogenous CHOP transcripts from the monosome to polysome fraction, indicating an increase in translation. Furthermore, we found that the uncapped truncated huORFchop -69-105-nt transcript contains an internal ribosome entry site (IRES), facilitating translation of the cleaved transcript. Therefore, we propose a model where ENDOU-mediated transcript cleavage positively regulates CHOP translation resulting in increased CHOP protein levels upon stress. Specifically, CHOP transcript cleavage changes the configuration of huORFchop thereby releasing its inhibition and allowing the stalled ribosomes to resume translation of the downstream ORF.


Assuntos
RNA Mensageiro/genética , Fator de Transcrição CHOP/genética , Endorribonucleases Específicas de Uridilato/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Motivos de Nucleotídeos , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Fator de Transcrição CHOP/metabolismo , Peixe-Zebra
19.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36533583

RESUMO

Many maternal mRNAs are translationally repressed during oocyte development and spatio-temporally activated during early embryogenesis, which is crucial for oocyte and early embryo development. By analyzing maternal mutants of nanog (Mnanog) in zebrafish, we demonstrated that Nanog tightly controls translation of maternal mRNA during oogenesis via transcriptional repression of eukaryotic translation elongation factor 1 alpha 1, like 2 (eef1a1l2). Loss of maternal Nanog led to defects of egg maturation, increased endoplasmic reticulum stress, and an activated unfold protein response, which was caused by elevated translational activity. We further demonstrated that Nanog, as a transcriptional repressor, represses the transcription of eefl1a1l2 by directly binding to the eef1a1l2 promoter in oocytes. More importantly, depletion of eef1a1l2 in nanog mutant females effectively rescued the elevated translational activity in oocytes, oogenesis defects and embryonic defects of Mnanog embryos. Thus, our study demonstrates that maternal Nanog regulates oogenesis and early embryogenesis through translational control of maternal mRNA via a mechanism whereby Nanog acts as a transcriptional repressor to suppress transcription of eef1a1l2.


Assuntos
RNA Mensageiro Estocado , Peixe-Zebra , Animais , Feminino , RNA Mensageiro Estocado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Oogênese/genética , Desenvolvimento Embrionário/genética , Oócitos/metabolismo , Biossíntese de Proteínas , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
RNA ; 29(6): 735-744, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878710

RESUMO

It is estimated that nearly 50% of mammalian transcripts contain at least one upstream open reading frame (uORF), which are typically one to two orders of magnitude smaller than the downstream main ORF. Most uORFs are thought to be inhibitory as they sequester the scanning ribosome, but in some cases allow for translation reinitiation. However, termination in the 5' UTR at the end of uORFs resembles premature termination that is normally sensed by the nonsense-mediated mRNA decay (NMD) pathway. Translation reinitiation has been proposed as a method for mRNAs to prevent NMD. Here, we test how uORF length influences translation reinitiation and mRNA stability in HeLa cells. Using custom 5' UTRs and uORF sequences, we show that reinitiation can occur on heterologous mRNA sequences, favors small uORFs, and is supported when initiation occurs with more initiation factors. After determining reporter mRNA half-lives in HeLa cells and mining available mRNA half-life data sets for cumulative predicted uORF length, we conclude that translation reinitiation after uORFs is not a robust method for mRNAs to prevent NMD. Together, these data suggest that the decision of whether NMD ensues after translating uORFs occurs before reinitiation in mammalian cells.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Ribossomos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células HeLa , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Fases de Leitura Aberta/genética , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa