Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.572
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37979582

RESUMO

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Cell ; 186(15): 3227-3244.e20, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339632

RESUMO

Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.


Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Ribossomos/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Códon de Terminação/metabolismo , Mamíferos/metabolismo
3.
Cell ; 183(7): 1813-1825.e18, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33296703

RESUMO

Binding of arrestin to phosphorylated G-protein-coupled receptors (GPCRs) controls many aspects of cell signaling. The number and arrangement of phosphates may vary substantially for a given GPCR, and different phosphorylation patterns trigger different arrestin-mediated effects. Here, we determine how GPCR phosphorylation influences arrestin behavior by using atomic-level simulations and site-directed spectroscopy to reveal the effects of phosphorylation patterns on arrestin binding and conformation. We find that patterns favoring binding differ from those favoring activation-associated conformational change. Both binding and conformation depend more on arrangement of phosphates than on their total number, with phosphorylation at different positions sometimes exerting opposite effects. Phosphorylation patterns selectively favor a wide variety of arrestin conformations, differently affecting arrestin sites implicated in scaffolding distinct signaling proteins. We also reveal molecular mechanisms of these phenomena. Our work reveals the structural basis for the long-standing "barcode" hypothesis and has important implications for design of functionally selective GPCR-targeted drugs.


Assuntos
Arrestina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Arrestina/química , Simulação por Computador , Células HEK293 , Humanos , Fosfatos/metabolismo , Fosfopeptídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Análise Espectral
4.
Mol Cell ; 84(20): 3967-3978.e8, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39317199

RESUMO

While many mRNAs contain more than one translation initiation site (TIS), the functions of most alternative TISs and their corresponding protein isoforms (proteoforms) remain undetermined. Here, we showed that alternative usage of CUG and AUG TISs in neuronal pentraxin receptor (NPR) mRNA produced two proteoforms, of which the ratio was regulated by RNA secondary structure and neuronal activity. Downstream AUG initiation truncated the N-terminal transmembrane domain and produced a secreted NPR proteoform sufficient in promoting synaptic clustering of AMPA-type glutamate receptors. Mutations that altered the ratio of NPR proteoforms reduced AMPA receptors in parvalbumin-positive interneurons and affected learning behaviors in mice. In addition to NPR, upstream AUU-initiated N-terminal extension of C1q-like synaptic organizers anchored these otherwise secreted factors to the membrane. Together, these results uncovered the plasticity of N-terminal signal sequences regulated by alternative TIS usage as a potentially widespread mechanism in diversifying protein localization and functions.


Assuntos
Proteínas do Tecido Nervoso , Receptores de AMPA , Sinapses , Animais , Camundongos , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Sinapses/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Humanos , Iniciação Traducional da Cadeia Peptídica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Interneurônios/metabolismo , Células HEK293 , Códon de Iniciação/genética , Camundongos Endogâmicos C57BL , Masculino , Plasticidade Neuronal/genética , Mutação , Neurônios/metabolismo , Parvalbuminas/metabolismo , Parvalbuminas/genética , Proteína C-Reativa , Proteínas de Ligação ao Cálcio , Moléculas de Adesão de Célula Nervosa
5.
Mol Cell ; 84(10): 1917-1931.e15, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38723633

RESUMO

Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Retículo Endoplasmático , Proteínas de Membrana , ATPases do Tipo-P , Dobramento de Proteína , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Retículo Endoplasmático/metabolismo , Células HEK293 , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , Domínios Proteicos , Processamento de Proteína Pós-Traducional , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/química , ATPases do Tipo-P/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo
6.
Annu Rev Biochem ; 84: 739-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25621509

RESUMO

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. The structure of intact forms of this receptor has yet to be determined, but intense investigations of fragments of the receptor have provided a detailed view of its activation mechanism, which we review here. Ligand binding converts the receptor to a dimeric form, in which contacts are restricted to the receptor itself, allowing heterodimerization of the four EGFR family members without direct ligand involvement. Activation of the receptor depends on the formation of an asymmetric dimer of kinase domains, in which one kinase domain allosterically activates the other. Coupling between the extracellular and intracellular domains may involve a switch between alternative crossings of the transmembrane helices, which form dimeric structures. We also discuss how receptor regulation is compromised by oncogenic mutations and the structural basis for negative cooperativity in ligand binding.


Assuntos
Receptores ErbB/metabolismo , Animais , Dimerização , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/química , Humanos , Ligação Proteica , Estrutura Terciária de Proteína
7.
Mol Cell ; 82(22): 4277-4289.e10, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36283413

RESUMO

The biosynthesis of thousands of proteins requires targeting a signal sequence or transmembrane segment (TM) to the endoplasmic reticulum (ER). These hydrophobic ɑ helices must localize to the appropriate cellular membrane and integrate in the correct topology to maintain a high-fidelity proteome. Here, we show that the P5A-ATPase ATP13A1 prevents the accumulation of mislocalized and misoriented proteins, which are eliminated by different ER-associated degradation (ERAD) pathways in mammalian cells. Without ATP13A1, mitochondrial tail-anchored proteins mislocalize to the ER through the ER membrane protein complex and are cleaved by signal peptide peptidase for ERAD. ATP13A1 also facilitates the topogenesis of a subset of proteins with an N-terminal TM or signal sequence that should insert into the ER membrane with a cytosolic N terminus. Without ATP13A1, such proteins accumulate in the wrong orientation and are targeted for ERAD by distinct ubiquitin ligases. Thus, ATP13A1 prevents ERAD of diverse proteins capable of proper folding.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sinais Direcionadores de Proteínas , Dobramento de Proteína , Mamíferos/metabolismo
8.
Mol Cell ; 81(23): 4784-4798.e7, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800360

RESUMO

Calcium influx through plasma membrane calcium release-activated calcium (CRAC) channels, which are formed of hexamers of Orai1, is a potent trigger for many important biological processes, most notably in T cell-mediated immunity. Through a bioinformatics-led cell biological screen, we have identified Orai1 as a substrate for the rhomboid intramembrane protease RHBDL2. We show that RHBDL2 prevents stochastic calcium signaling in unstimulated cells through conformational surveillance and cleavage of inappropriately activated Orai1. A conserved disease-linked proline residue is responsible for RHBDL2's recognizing the active conformation of Orai1, which is required to sharpen switch-like signaling triggered by store-operated calcium entry. Loss of RHBDL2 control of CRAC channel activity causes severe dysregulation of downstream CRAC channel effectors, including transcription factor activation, inflammatory cytokine expression, and T cell activation. We propose that this surveillance function may represent an ancient activity of rhomboid proteases in degrading unwanted signaling proteins.


Assuntos
Proteína ORAI1/química , Peptídeo Hidrolases/química , Serina Endopeptidases/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Sinalização do Cálcio/fisiologia , Membrana Celular/metabolismo , Biologia Computacional , Drosophila melanogaster , Células HEK293 , Humanos , Ativação do Canal Iônico , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Mutação , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Processos Estocásticos
9.
EMBO J ; 42(7): e111112, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799040

RESUMO

Brain metastasis, most commonly originating from lung cancer, increases cancer morbidity and mortality. Although metastatic colonization is the rate-limiting and most complex step of the metastatic cascade, the underlying mechanisms are poorly understood. Here, in vivo genome-wide CRISPR-Cas9 screening revealed that loss of interferon-induced transmembrane protein 1 (IFITM1) promotes brain colonization of human lung cancer cells. Incipient brain metastatic cancer cells with high expression of IFITM1 secrete microglia-activating complement component 3 and enhance the cytolytic activity of CD8+ T cells by increasing the expression and membrane localization of major histocompatibility complex class I. After activation, microglia (of the innate immune system) and cytotoxic CD8+ T lymphocytes (of the adaptive immune system) were found to jointly eliminate cancer cells by releasing interferon-gamma and inducing phagocytosis and T-cell-mediated killing. In human cancer clinical trials, immune checkpoint blockade therapy response was significantly correlated with IFITM1 expression, and IFITM1 enhanced the brain metastasis suppression efficacy of PD-1 blockade in mice. Our results exemplify a novel mechanism through which metastatic cancer cells overcome the innate and adaptive immune responses to colonize the brain, and suggest that a combination therapy increasing IFITM1 expression in metastatic cells with PD-1 blockade may be a promising strategy to reduce metastasis.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Neoplasias Pulmonares/patologia , Encéfalo/patologia
10.
Immunity ; 49(5): 829-841.e6, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30389415

RESUMO

Initial molecular details of cellular activation following αßT cell antigen receptor (TCR) ligation by peptide-major histocompatibility complexes (pMHC) remain unexplored. We determined the nuclear magnetic resonance (NMR) structure of the TCRα subunit transmembrane (TM) domain revealing a bipartite helix whose segmentation fosters dynamic movement. Positively charged TM residues Arg251 and Lys256 project from opposite faces of the helix, with Lys256 controlling immersion depth. Their modification caused stepwise reduction in TCR associations with CD3ζζ homodimers and CD3εγ plus CD3εδ heterodimers, respectively, leading to an activated transcriptome. Optical tweezers revealed that Arg251 and Lys256 mutations altered αßTCR-pMHC bond lifetimes, while mutations within interacting TCRα connecting peptide and CD3δ CxxC motif juxtamembrane elements selectively attenuated signal transduction. Our findings suggest that mechanical forces applied during pMHC ligation initiate T cell activation via a dissociative mechanism, shifting disposition of those basic sidechains to rearrange TCR complex membrane topology and weaken TCRαß and CD3 associations.


Assuntos
Complexo CD3/metabolismo , Membrana Celular/metabolismo , Domínios Proteicos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Sequência de Aminoácidos , Biomarcadores , Complexo CD3/química , Sequência Conservada , Perfilação da Expressão Gênica , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Transdução de Sinais , Transcriptoma
11.
Proc Natl Acad Sci U S A ; 121(28): e2403143121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959041

RESUMO

Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.


Assuntos
Potenciais de Ação , Poliestirenos , Sinapses , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Poliestirenos/química , Nanotecnologia/métodos , Nanotecnologia/instrumentação
12.
Proc Natl Acad Sci U S A ; 121(8): e2314096121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38354260

RESUMO

Mechanotransduction is the process by which a mechanical force, such as touch, is converted into an electrical signal. Transmembrane channel-like (TMC) proteins are an evolutionarily conserved family of membrane proteins whose function has been linked to a variety of mechanosensory processes, including hearing and balance sensation in vertebrates and locomotion in Drosophila. TMC1 and TMC2 are components of ion channel complexes, but the molecular features that tune these complexes to diverse mechanical stimuli are unknown. Caenorhabditis elegans express two TMC homologs, TMC-1 and TMC-2, both of which are the likely pore-forming subunits of mechanosensitive ion channels but differ in their expression pattern and functional role in the worm. Here, we present the single-particle cryo-electron microscopy structure of the native TMC-2 complex isolated from C. elegans. The complex is composed of two copies of the pore-forming TMC-2 subunit, the calcium and integrin binding protein CALM-1 and the transmembrane inner ear protein TMIE. Comparison of the TMC-2 complex to the recently published cryo-EM structure of the C. elegans TMC-1 complex highlights conserved protein-lipid interactions, as well as a π-helical structural motif in the pore-forming helices, that together suggest a mechanism for TMC-mediated mechanosensory transduction.


Assuntos
Proteínas de Caenorhabditis elegans , Mecanotransdução Celular , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microscopia Crioeletrônica , Canais Iônicos/metabolismo , Lipídeos , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(17): e2314353121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635634

RESUMO

Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Ubiquitinas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
14.
EMBO J ; 41(9): e107505, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35099835

RESUMO

Establishment of correct synaptic connections is a crucial step during neural circuitry formation. The Teneurin family of neuronal transmembrane proteins promotes cell-cell adhesion via homophilic and heterophilic interactions, and is required for synaptic partner matching in the visual and hippocampal systems in vertebrates. It remains unclear how individual Teneurins form macromolecular cis- and trans-synaptic protein complexes. Here, we present a 2.7 Å cryo-EM structure of the dimeric ectodomain of human Teneurin4. The structure reveals a compact conformation of the dimer, stabilized by interactions mediated by the C-rich, YD-shell, and ABD domains. A 1.5 Å crystal structure of the C-rich domain shows three conserved calcium binding sites, and thermal unfolding assays and SAXS-based rigid-body modeling demonstrate that the compactness and stability of Teneurin4 dimers are calcium-dependent. Teneurin4 dimers form a more extended conformation in conditions that lack calcium. Cellular assays reveal that the compact cis-dimer is compatible with homomeric trans-interactions. Together, these findings support a role for teneurins as a scaffold for macromolecular complex assembly and the establishment of cis- and trans-synaptic interactions to construct functional neuronal circuits.


Assuntos
Cálcio , Tenascina , Animais , Cálcio/metabolismo , Humanos , Neurônios/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo , Tenascina/química , Tenascina/metabolismo , Difração de Raios X
15.
J Cell Sci ; 137(15)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38973735

RESUMO

Transmembrane domains (TMDs) contain information targeting membrane proteins to various compartments of the secretory pathway. In previous studies, short or hydrophilic TMDs have been shown to target membrane proteins either to the endoplasmic reticulum (ER) or to the Golgi apparatus. However, the basis for differential sorting to the ER and to the Golgi apparatus remained unclear. To clarify this point, we quantitatively analyzed the intracellular targeting of a collection of proteins exhibiting a single TMD. Our results reveal that membrane topology is a major targeting element in the early secretory pathway: type I proteins with a short TMD are targeted to the ER, and type II proteins to the Golgi apparatus. A combination of three features accounts for the sorting of simple membrane proteins in the secretory pathway: membrane topology, length and hydrophilicity of the TMD, and size of the cytosolic domain. By clarifying the rules governing sorting to the ER and to the Golgi apparatus, our study could revive the search for sorting mechanisms in the early secretory pathway.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Proteínas de Membrana , Domínios Proteicos , Transporte Proteico , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Animais , Células HeLa
16.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345099

RESUMO

Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TEER buildup in ΔMUC13 cells could be prevented by addition of MLCK, ROCK or protein kinase C (PKC) inhibitors. The levels of TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not affect TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC. The responsible PKC member might be PKCδ (or PRKCD) based on elevated protein levels in the absence of full-length MUC13. Our results demonstrate for the first time that a mucin protein can negatively regulate TJ function and stimulate intestinal barrier permeability.


Assuntos
Proteína Quinase C , Proteínas de Junções Íntimas , Humanos , Proteínas de Junções Íntimas/metabolismo , Proteína Quinase C/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Ocludina , Mucinas/metabolismo , Células Epiteliais/metabolismo
17.
EMBO Rep ; 25(9): 3896-3924, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39048751

RESUMO

The Bcl-2 family controls apoptosis by direct interactions of pro- and anti-apoptotic proteins. The principle mechanism is binding of the BH3 domain of pro-apoptotic proteins to the hydrophobic groove of anti-apoptotic siblings, which is therapeutically exploited by approved BH3-mimetic anti-cancer drugs. Evidence suggests that also the transmembrane domain (TMD) of Bcl-2 proteins can mediate Bcl-2 interactions. We developed a highly-specific split luciferase assay enabling the analysis of TMD interactions of pore-forming apoptosis effectors BAX, BAK, and BOK with anti-apoptotic Bcl-2 proteins in living cells. We confirm homotypic interaction of the BAX-TMD, but also newly identify interaction of the TMD of anti-apoptotic BCL-2 with the TMD of BOK, a peculiar pro-apoptotic Bcl-2 protein. BOK-TMD and BCL-2-TMD interact at the endoplasmic reticulum. Molecular dynamics simulations confirm dynamic BOK-TMD and BCL-2-TMD dimers and stable heterotetramers. Mutation of BCL-2-TMD at predicted key residues abolishes interaction with BOK-TMD. Also, inhibition of BOK-induced apoptosis by BCL-2 depends specifically on their TMDs. Thus, TMDs of Bcl-2 proteins are a relevant interaction interface for apoptosis regulation and provide a novel potential drug target.


Assuntos
Apoptose , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/química , Humanos , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Retículo Endoplasmático/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/química , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
18.
Mol Cell Proteomics ; 23(2): 100720, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246484

RESUMO

Nonobstructive azoospermia is the leading cause of male infertility. Abnormal levels of transmembrane protein 225 (TMEM225), a testis-specific protein, have been found in patients with nonobstructive azoospermia, suggesting that TMEM225 plays an essential role in male fertility. Here, we generated a Tmem225 KO mouse model to explore the function and mechanism of TMEM225 in male reproduction. Male Tmem225 KO mice were infertile. Surprisingly, Tmem225 deletion did not affect spermatogenesis, but TMEM225-null sperm exhibited abnormalities during epididymal maturation, resulting in reduced sperm motility and an abnormal hairpin-loop configuration. Furthermore, proteomics analyses of cauda sperm revealed that signaling pathways related to mitochondrial function, the glycolytic pathway, and sperm flagellar morphology were abnormal in Tmem225 KO sperm, and spermatozoa lacking TMEM225 exhibited high reactive oxygen species levels, reduced motility, and flagellar folding, leading to typical asthenospermia. These findings suggest that testicular TMEM225 may control the sperm maturation process by regulating the expression of proteins related to mitochondrial function, glycolysis, and sperm flagellar morphology in epididymal spermatozoa.


Assuntos
Azoospermia , Humanos , Masculino , Camundongos , Animais , Azoospermia/metabolismo , Maturação do Esperma , Motilidade dos Espermatozoides , Sêmen , Espermatozoides/metabolismo , Testículo/metabolismo , Espermatogênese , Fertilidade , Camundongos Knockout
19.
Mol Cell Proteomics ; 23(6): 100777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670310

RESUMO

Transmembrane (TM) proteins constitute over 30% of the mammalian proteome and play essential roles in mediating cell-cell communication, synaptic transmission, and plasticity in the central nervous system. Many of these proteins, especially the G protein-coupled receptors (GPCRs), are validated or candidate drug targets for therapeutic development for mental diseases, yet their expression profiles are underrepresented in most global proteomic studies. Herein, we establish a brain TM protein-enriched spectral library based on 136 data-dependent acquisition runs acquired from various brain regions of both naïve mice and mental disease models. This spectral library comprises 3043 TM proteins including 171 GPCRs, 231 ion channels, and 598 transporters. Leveraging this library, we analyzed the data-independent acquisition data from different brain regions of two mouse models exhibiting depression- or anxiety-like behaviors. By integrating multiple informatics workflows and library sources, our study significantly expanded the mental stress-perturbed TM proteome landscape, from which a new GPCR regulator of depression was verified by in vivo pharmacological testing. In summary, we provide a high-quality mouse brain TM protein spectral library to largely increase the TM proteome coverage in specific brain regions, which would catalyze the discovery of new potential drug targets for the treatment of mental disorders.


Assuntos
Encéfalo , Modelos Animais de Doenças , Transtornos Mentais , Camundongos Endogâmicos C57BL , Proteoma , Proteômica , Animais , Proteoma/metabolismo , Encéfalo/metabolismo , Proteômica/métodos , Camundongos , Transtornos Mentais/metabolismo , Proteínas de Membrana/metabolismo , Masculino , Receptores Acoplados a Proteínas G/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(29): e2220762120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37432995

RESUMO

Large datasets contribute new insights to subjects formerly investigated by exemplars. We used coevolution data to create a large, high-quality database of transmembrane ß-barrels (TMBB). By applying simple feature detection on generated evolutionary contact maps, our method (IsItABarrel) achieves 95.88% balanced accuracy when discriminating among protein classes. Moreover, comparison with IsItABarrel revealed a high rate of false positives in previous TMBB algorithms. In addition to being more accurate than previous datasets, our database (available online) contains 1,938,936 bacterial TMBB proteins from 38 phyla, respectively, 17 and 2.2 times larger than the previous sets TMBB-DB and OMPdb. We anticipate that due to its quality and size, the database will serve as a useful resource where high-quality TMBB sequence data are required. We found that TMBBs can be divided into 11 types, three of which have not been previously reported. We find tremendous variance in proteome percentage among TMBB-containing organisms with some using 6.79% of their proteome for TMBBs and others using as little as 0.27% of their proteome. The distribution of the lengths of the TMBBs is suggestive of previously hypothesized duplication events. In addition, we find that the C-terminal ß-signal varies among different classes of bacteria though its consensus sequence is LGLGYRF. However, this ß-signal is only characteristic of prototypical TMBBs. The ten non-prototypical barrel types have other C-terminal motifs, and it remains to be determined if these alternative motifs facilitate TMBB insertion or perform any other signaling function.


Assuntos
Algoritmos , Proteoma , Humanos , Proteínas de Bactérias/genética , Evolução Biológica , Sequência Consenso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa