Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Clin Infect Dis ; 76(2): 335-337, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36184991

RESUMO

In Australia, Japanese encephalitis virus circulated in tropical north Queensland between 1995 and 2005. In 2022, a dramatic range expansion across the southern states has resulted in 30 confirmed human cases and 6 deaths. We discuss the outbreak drivers and estimate the potential size of the human population at risk.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Humanos , Encefalite Japonesa/epidemiologia , Austrália/epidemiologia , Surtos de Doenças , Fatores de Risco
2.
Parasitology ; 150(8): 700-704, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37232239

RESUMO

Angiostrongylus cantonensis (the rat lungworm) is a zoonotic parasite of non-permissive accidental (dogs, humans, horses, marsupials, birds) hosts. The 3rd stage larvae (L3s) in the intermediate host (molluscs) act as the source of infection for accidental hosts through ingestion. Larvae can spontaneously emerge from dead gastropods (slugs and snails) in water, which are experimentally infective to rats. We sought to identify the time when infective A. cantonensis larvae can autonomously leave dead experimentally infected Bullastra lessoni snails. The proportion of A. cantonensis larvae that emerge from crushed and submerged B. lessoni is higher in snails 62 days post-infection (DPI) (30.3%). The total larval burden of snails increases at 91 DPI, indicating that emerged larvae subsequently get recycled by the population. There appears to be a window of opportunity between 1 and 3 months for infective larvae to autonomously escape dead snails. From a human and veterinary medicine viewpoint, the mode of infection needs to be considered; whether that be through ingestion of an infected gastropod, or via drinking water contaminated with escaped larvae.


Assuntos
Angiostrongylus cantonensis , Angiostrongylus , Gastrópodes , Infecções por Strongylida , Animais , Ratos , Gastrópodes/parasitologia , Cavalos , Larva , Infecções por Strongylida/parasitologia , Água/parasitologia
3.
J Environ Manage ; 321: 115918, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994956

RESUMO

Climbing the dual value chain (DVC) of parallel development in global and domestic value chains is an important channel to get rid of bottom solidification. Based on the data of international input-output tables after embedding provinces and decomposing value-added flow during 2003-2012, this article provides measurement for downstream or upstream embedding and division position indexes of A-listed firms. Then, theoretical framework of environmental regulation affecting DVC embeddedness is constructed, and the Environmental Information Disclosure (EID) trial implemented in 2008 is regarded as a quasi-natural experiment. The results show that EID enhances corporate division position in DVC by weakening downstream embeddedness and increasing upstream embeddedness, domestic firms are gradually transforming from low-end manufacturers to high-end designers. The effect works with a year lag in downstream embeddedness and lags 2 years in others. Heterogeneity analysis confirms that enhancement of division position is more sensitive in resource-rich cities with high marketization or labor-intensive firms and manufacturing or service sectors. Besides, we find that environmental regulation such as EID induces technological innovation for process upgrade, product improvement for quality upgrade and allocation optimization for function upgrade to transform the role and degree of firms embedding DVC.


Assuntos
Revelação , Organizações , China , Comércio
4.
J Infect Dis ; 224(8): 1422-1431, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33534886

RESUMO

Plasmodium vivax malaria was thought to be rare in Africa, but an increasing number of P. vivax cases reported across Africa and in Duffy-negative individuals challenges this dogma. The genetic characteristics of P. vivax in Duffy-negative infections, the transmission of P. vivax in East Africa, and the impact of environments on transmission remain largely unknown. This study examined genetic and transmission features of P. vivax from 107 Duffy-negative and 305 Duffy-positive individuals in Ethiopia and Sudan. No clear genetic differentiation was found in P. vivax between the 2 Duffy groups, indicating between-host transmission. P. vivax from Ethiopia and Sudan showed similar genetic clusters, except samples from Khartoum, possibly due to distance and road density that inhibited parasite gene flow. This study is the first to show that P. vivax can transmit to and from Duffy-negative individuals and provides critical insights into the spread of P. vivax in sub-Saharan Africa.


Assuntos
Sistema do Grupo Sanguíneo Duffy/sangue , Eritrócitos/parasitologia , Malária Vivax/sangue , Plasmodium vivax/isolamento & purificação , África Oriental/epidemiologia , Sistema do Grupo Sanguíneo Duffy/genética , Pool Gênico , Variação Genética , Humanos , Malária Vivax/epidemiologia , Malária Vivax/genética , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Receptores de Superfície Celular/genética , Sudão
5.
Microb Ecol ; 81(1): 67-77, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32561945

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are foodborne bacterial pathogens, with cattle a significant reservoir for human infection. This study evaluated environmental reservoirs, intermediate hosts and key pathways that could drive the presence of Top 7 STEC (O157:H7, O26, O45, O103, O111, O121 and O145) on pasture-based dairy herds, using molecular and culture-based methods. A total of 235 composite environmental samples (including soil, bedding, pasture, stock drinking water, bird droppings and flies and faecal samples of dairy animals) were collected from two dairy farms, with four sampling events on each farm. Molecular detection revealed O26, O45, O103 and O121 as the most common O-serogroups, with the greatest occurrence in dairy animal faeces (> 91%), environments freshly contaminated with faeces (> 73%) and birds and flies (> 71%). STEC (79 isolates) were a minor population within the target O-serogroups in all sample types but were widespread in the farm environment in the summer samplings. Phylogenetic analysis of whole genome sequence data targeting single nucleotide polymorphisms revealed the presence of several clonal strains on a farm; a single STEC clonal strain could be found in several sample types concurrently, indicating the existence of more than one possible route for transmission to dairy animals and a high rate of transmission of STEC between dairy animals and wildlife. Overall, the findings improved the understanding of the ecology of the Top 7 STEC in open farm environments, which is required to develop on-farm intervention strategies controlling these zoonoses.


Assuntos
Infecções por Escherichia coli/transmissão , Doenças Transmitidas por Alimentos/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Animais Selvagens/microbiologia , Bovinos , Indústria de Laticínios , Fazendas , Fezes/microbiologia , Tipagem Molecular/métodos , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Escherichia coli Shiga Toxigênica/genética
6.
Environ Sci Technol ; 55(12): 8169-8179, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34086447

RESUMO

Household latrine access generally is not associated with reduced fecal contamination in the environment, but its long-term effectiveness has not been measured. We conducted an environmental assessment nested within the WASH Benefits Bangladesh randomized controlled trial (NCT01590095). We quantified E. coli and fecal coliforms in samples of stored drinking water, child hands, mother hands, soil, and food among a random sample of households from the sanitation and control arms of the trial. Samples were collected during eight quarterly visits approximately 1-3.5 years after intervention initiation. Overall, there were no substantial differences in environmental fecal contamination between households enrolled in the sanitation and control arms. Statistically significant reductions were found in stored water and child hands after pooling across sampling rounds, but the effects were small and not consistent across rounds. In addition, we assessed potential effect modification of intervention effects by follow-up time, season, wealth, community-level latrine density and coverage, population density, and domestic animal ownership. While the intervention had statistically significant effects within some subgroups, there were no consistent patterns of effect modification. Our findings support a growing consensus that on-site latrines are insufficient to prevent fecal contamination in the rural household environment.


Assuntos
Escherichia coli , Saneamento , Animais , Bangladesh , Criança , Fezes , Humanos , População Rural , Banheiros
7.
Emerg Infect Dis ; 26(3): 472-480, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32091357

RESUMO

The relative roles that movement and proximity networks play in the spread of highly pathogenic avian influenza (HPAI) viruses are often unknown during an epidemic, preventing effective control. We used network analysis to explore the devastating epidemic of HPAI A(H5N8) among poultry, in particular ducks, in France during 2016-2017 and to estimate the likely contribution of live-duck movements. Approximately 0.2% of live-duck movements could have been responsible for between-farm transmission events, mostly early during the epidemic. Results also suggest a transmission risk of 35.5% when an infected holding moves flocks to another holding within 14 days before detection. Finally, we found that densely connected groups of holdings with sparse connections between groups overlapped farmer organizations, which represents important knowledge for surveillance design. This study highlights the importance of movement bans in zones affected by HPAI and of understanding transmission routes to develop appropriate HPAI control strategies.


Assuntos
Criação de Animais Domésticos , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Influenza Aviária/epidemiologia , Animais , Patos , França/epidemiologia , Virus da Influenza A Subtipo H5N1 , Influenza Aviária/transmissão
8.
Epidemiol Infect ; 147: e80, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869017

RESUMO

In 2017, Italy experienced a large measles epidemic with 5408 cases and four deaths. As Subnational Reference Laboratory of the Measles and Rubella surveillance NETwork (MoRoNET), the EpiSoMI (Epidemiology and Molecular Surveillance of Infections) Laboratory (University of Milan) set up rapid and active surveillance for the complete characterisation of the Measles virus (Mv) responsible for the large measles outbreak in Milan and surrounding areas (Lombardy, Northern Italy). The aims of this study were to describe the genetic profile of circulating viruses and to track the pathway of measles transmission. Molecular analysis was performed by sequencing the highly variable 450 nucleotides region of the N gene (N-450) of Mv genome. Two-hundred and ninety-nine strains of Mv were analysed. The phylogenetic analysis showed five different variants, two not previously described in the studied area, belonging to D8 and B3 genotypes. Three events of continuous transmission of autochthonous variants (D8-Osaka, D8-London and B3-Milan variants) and two events of continuous transmission of imported variants (B3-Dublin and D8-Hulu Langat) tracked five different transmission pathways. These pathways outlined two epidemic peaks: the first in April and the second in July 2017. The correlation between Mv variant and the epidemiological data may enable us to identify the sources of virus importation and recognise long-lasting virus transmission pathways.


Assuntos
Epidemias , Genótipo , Vírus do Sarampo/genética , Sarampo/epidemiologia , Humanos , Itália/epidemiologia , Sarampo/virologia , Vírus do Sarampo/classificação , Filogenia
9.
Artigo em Alemão | MEDLINE | ID: mdl-29616289

RESUMO

People and animals share the same environment and antibiotics are used in both. Thus, antibiotics resistance is a major common issue for human and veterinary medicine. The potential impact of antibiotics use in animals on resistance in humans is frequently the focus of debate. In this paper the transmission pathways of resistant bacteria between animals and humans are described and the question is addressed whether a reduction in antibiotics use in animals contributes to the improvement of the resistance situation in humans. Direct contact between humans and animals, transmission of bacteria via food, and indirect transmission via emissions in the environment and the subsequent exposure of humans via the environment are the major transmission routes to be considered. It can thus be established that the relevance of these various transmission routes varies significantly among bacterial species. Furthermore, despite numerous investigations, the exact significance of transmission pathways and the bacteria transferred for the resistance situation in humans cannot yet be precisely quantified. There is evidence that antibiotics use in animals fosters the spread of resistant organisms in animals. Recent studies also suggest that there might be a relationship between antibiotics use in animals and the occurrence of resistance in humans. However, this relationship is complex, and for a better understanding of it and the role of the various transmission pathways, further collaborative studies between veterinary and medical science are needed.


Assuntos
Resistência Microbiana a Medicamentos , Saúde Única/tendências , Drogas Veterinárias/efeitos adversos , Zoonoses/transmissão , Animais , Microbiologia de Alimentos , Humanos , Fatores de Risco , Drogas Veterinárias/administração & dosagem , Zoonoses/microbiologia
10.
J Invertebr Pathol ; 145: 68-71, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28216093

RESUMO

The crayfish plague pathogen (Aphanomyces astaci) causes mass mortalities of European crayfish when transmitted from its original North American crayfish hosts. Little is known, however, about interspecific transmission of the pathogen between different American crayfish species, although evidence from trade of ornamental crayfish suggests this may happen in captivity. We screened signal and virile crayfish for A. astaci at allopatric and sympatric sites in a UK river. Whilst the pathogen was detected in signal crayfish from both sites, infected virile crayfish were only found in sympatry. Genotyping of A. astaci from virile crayfish suggested the presence of a strain related to one infecting British signal crayfish. We conclude that virile crayfish likely contracted A. astaci interspecifically from infected signal crayfish. Interspecific transmission of A. astaci strains differing in virulence between American carrier species may influence the spread of this pathogen in open waters with potential exacerbated effects on native European crayfish.


Assuntos
Aphanomyces/patogenicidade , Astacoidea/microbiologia , Doenças dos Peixes/transmissão , Infecções/transmissão , Animais , Reino Unido , Virulência
11.
J Invertebr Pathol ; 150: 63-69, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28916146

RESUMO

Chinese Sacbrood virus (CSBV) is a positive-stranded RNAvirus that infects both the European honey bee (Apis mellifera) and the Asian honey bee (A. cerana). However, CSBV has much more devastating effects on Asian honey bees than on European honey bees, posing a serious threat to the agricultural and natural ecosystems that rely on A. cerana for pollination service. Using quantitative RT-PCR method, we conducted studies to examine the CSBV infection in Asian honey bee colonies and immune responses of individual bees in response to CSBV infection. Our study showed that CSBV could cause infection in different developmental stages of workers including eggs, larvae, pupae, newly emerged workers, and foraging workers. In addition, evaluating the tissue tropism and transmission of CSBV in infected bees showed that CSBV was detected in the ovaries, spermatheca, and feces of queens as well as semen of drones of the same colonies, suggesting an existence of vertical transmission of CSBV in Asian honey bees. Further, the detection of CSBV in colony food suggests that healthy bees could pick the infection by the virus-contaminated food, and therefore, a possible existence of a food-borne transmission pathway of CSBV in Asian bee colonies. The expression analysis of transcripts (defensin, abaecin, apidaecin, and hymenoptaecin) involving innate antiviral immune pathways showed that CSBV infection could induce significant immune responses in infected bees. However, the immune responses to CSBV infection varied among different development stages with eggs exhibiting the lowest level of immune expression and forager workers exhibiting the highest level of immune gene expression. The results obtained in the study yield important insights into the mechanisms underlying disease pathogenesis of CSBV infections in Asian honey bees and provide valuable information for a rational design of disease control measures.


Assuntos
Abelhas/virologia , Vírus de Insetos , Vírus de RNA , Viroses/imunologia , Animais , Abelhas/imunologia
12.
Pathog Glob Health ; 117(6): 605-610, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36458497

RESUMO

One of the most challenging issues with the sources of ancient medicine is to be able to identify the correspondence between the diseases we know today and those reported in ancient medical texts. Ancient diseases' definitions rarely help us, and the symptoms described often correspond to more than one disease. This is especially true about tuberculosis, a disease that historians of medicine habitually associates with the Greek words phthi(n)o (φθίνω), verb, phthisis/phthoe (φθίσις/φθόη), noun, phthinodes/phthisikos (φθινώδης/φθισικός), adjective, all etymologically linked to an Indo-European root that expresses the idea of consumption in a broad sense. This article aims to analyze a group of Greek words, branchos/branchia (ßράγχος/ßράγχια), krauros/kraurao (κραῦρος/κραυράω), and katarreo (καταρρέω), that appear in nosological contexts very close to the infectious disease that today we call tuberculosis. Moreover, the paper aims to focus on the transmission pathways of TB being via animal-human contact and some ancient strategies to cure it. The symptoms, transmission pathways and therapeutic approach of tuberculosis belong to a homogeneous pathological picture that emerges from a set of texts that date back to the period between the fifth century BC and the second century AD.


Assuntos
Tuberculose Pulmonar , Tuberculose , Animais , Humanos , Grécia
13.
Pathogens ; 12(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242369

RESUMO

To design cost-effective prevention strategies against mastitis in dairy cow farms, knowledge about infection pathways of causative pathogens is necessary. Therefore, we investigated the reservoirs of bacterial strains causing intramammary infections in one dairy cow herd. Quarter foremilk samples (n = 8056) and milking- and housing-related samples (n = 251; from drinking troughs, bedding material, walking areas, cow brushes, fly traps, milking liners, and milker gloves), were collected and examined using culture-based methods. Species were identified with MALDI-TOF MS, and selected Staphylococcus and Streptococcus spp. typed with randomly amplified polymorphic DNA-PCR. Staphylococci were isolated from all and streptococci from most investigated locations. However, only for Staphylococcus aureus, matching strain types (n = 2) were isolated from milk and milking-related samples (milking liners and milker gloves). Staphylococcus epidermidis and Staphylococcus haemolyticus showed a large genetic diversity without any matches of strain types from milk and other samples. Streptococcus uberis was the only Streptococcus spp. isolated from milk and milking- or housing-related samples. However, no matching strains were found. This study underlines the importance of measures preventing the spread of Staphylococcus aureus between quarters during milking.

14.
Animals (Basel) ; 13(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003100

RESUMO

African swine fever (ASF) is a highly contagious viral disease affecting both domestic and wild boars. Since its first outbreak in South Korea in 2019, substantial efforts have been made to prevent ASF transmission by reducing the wild boar population and eliminating infected carcasses; however, the persistence of ASF transmission has posed challenges to these efforts. To improve ASF management strategies, the limitations of current management strategies must be identified by considering disparities between wild boar habitats and ASF-managed areas with environmental and anthropogenic characteristics of wild boars and their management strategies. Here, ensemble species distribution models were used to estimate wild boar habitats and potential ASF-managed areas, with elevation, distance to urban areas, and Normalized Difference Vegetation Index as important variables. Binary maps of wild boar habitats and potential ASF-managed areas were generated using the maxSSS as the threshold criterion. Disparity areas of ASF management were identified by overlying regions evaluated as wild boar habitats with those not classified as ASF-managed areas. Dense forests near urban regions like Chungcheongbuk-do, Gyeongsangbuk-do, and Gyeongsangnam-do were evaluated as disparity areas having high risk of ASF transmission. These findings hold significant potential for refining ASF management strategies and establishing proactive control measures.

15.
One Health ; 17: 100658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116454

RESUMO

This study investigated the influence of stress on release of Angiostrongylus cantonensis larvae from a snail host, Parmarion martensi. We subjected 140 infected, wild-caught P. martensi to three stress-inducing treatments (heat, molluscicide, physical disturbance) and an unstressed control treatment for 24 h, after which larval presence and abundance in the slime were quantified by qPCR targeting the ITS1 region of the parasite's DNA, and compared among treatments. The significance of stress and host infection load on larval release was determined by generalized linear mixed models and permutation tests. The results indicated that stress significantly increased the probability of larval presence in slime and the number of larvae released, and highly infected snails were also more likely to release larvae. Among stressed snails, 13.3% released larvae into slime, the number of larvae present in the slime ranging from 45.5 to 4216. Unstressed controls released no larvae. This study offers a partial explanation for conflicting results from prior studies regarding A. cantonensis presence in snail slime and sheds light on the broader One Health implications. Stress-induced larval release highlights the potential role of slime as a medium for pathogen transmission to accidental, paratenic, definitive and other intermediate hosts. These findings emphasize the importance of considering stress-mediated interactions in host-parasite systems and their implications for zoonotic disease emergence. As stressors continue to escalate because of anthropogenic activities and climate change, understanding the role of stress in pathogen shedding and transmission becomes increasingly important for safeguarding human and wildlife health within the One Health framework.

16.
Environ Sci Pollut Res Int ; 30(37): 86521-86539, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37418185

RESUMO

Staphylococcus aureus (S. aureus) is a fearsome bacterial pathogen that can colonize and infect humans and animals. Depending on the different sources, MRSA is classified as hospital-associated methicillin-resistant S. aureus (HA-MRSA), community-associated MRSA (CA-MRSA), and livestock-associated MRSA (LA-MRSA). LA-MRSA is initially associated with livestock, and clonal complexes (CCs) were almost always 398. However, the continued development of animal husbandry, globalization, and the widespread use of antibiotics have increased the spread of LA-MRSA among humans, livestock, and the environment, and other clonal complexes such as CC9, CC5, and CC8 have gradually emerged in various countries. This may be due to frequent host switching between humans and animals, as well as between animals. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements (MGEs) such as phages, pathogenicity islands, and plasmids as well as further host-specific mutations allowing it to expand into new host populations. This review aimed to provide an overview of the transmission characteristics of S. aureus in humans, animals, and farm environments, and also to describe the main prevalent clones of LA-MRSA and the changes in MGEs during host switching.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Humanos , Gado , Fazendas , Staphylococcus aureus , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia
17.
Geohealth ; 7(6): e2022GH000760, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303696

RESUMO

Climate sensitivity of infectious diseases is discussed in many studies. A quantitative basis for distinguishing and predicting the disease impacts of climate and other environmental and anthropogenic driver-pressure changes, however, is often lacking. To assess research effort and identify possible key gaps that can guide further research, we here apply a scoping review approach to two widespread infectious diseases: Lyme disease (LD) as a vector-borne and cryptosporidiosis as a water-borne disease. Based on the emerging publication data, we further structure and quantitatively assess the driver-pressure foci and interlinkages considered in the published research so far. This shows important research gaps for the roles of rarely investigated water-related and socioeconomic factors for LD, and land-related factors for cryptosporidiosis. For both diseases, the interactions of host and parasite communities with climate and other driver-pressure factors are understudied, as are also important world regions relative to the disease geographies; in particular, Asia and Africa emerge as main geographic gaps for LD and cryptosporidiosis research, respectively. The scoping approach developed and gaps identified in this study should be useful for further assessment and guidance of research on infectious disease sensitivity to climate and other environmental and anthropogenic changes around the world.

18.
Front Microbiol ; 13: 909396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836425

RESUMO

The last outbreak of classical swine fever (CSF) in the UK occurred in 2000. A total of 16 domestic pig holdings in the East Anglia region were confirmed as infected over a 3-month period. Obtaining viral genome sequences has since become easier and more cost-effective and has accordingly been applied to trace viral transmission events for a variety of viruses. The rate of genetic evolution varies for different viruses and is influenced by different transmission events, which will vary according to the epidemiology of an outbreak. To examine if genetic changes over the course of any future CSF outbreak would occur to supplement epidemiological investigations and help to track virus movements, the E2 gene and full genome of the virus present in archived tonsil samples from 14 of these infected premises were sequenced. Insufficient changes occurred in the full E2 gene to discriminate between the viruses from the different premises. In contrast, between 5 and 14 nucleotide changes were detected between the genome sequence of the virus from the presumed index case and the sequences from the other 13 infected premises. Phylogenetic analysis of these full CSFV genome sequences identified clusters of closely related viruses that allowed to corroborate some of the transmission pathways inferred by epidemiological investigations at the time. However, other sequences were more distinct and raised questions about the virus transmission routes previously implicated. We are thus confident that in future outbreaks, real-time monitoring of the outbreak via full genome sequencing will be beneficial.

19.
J R Soc Interface ; 19(186): 20210690, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016555

RESUMO

Social and spatial network analysis is an important approach for investigating infectious disease transmission, especially for pathogens transmitted directly between individuals or via environmental reservoirs. Given the diversity of ways to construct networks, however, it remains unclear how well networks constructed from different data types effectively capture transmission potential. We used empirical networks from a population in rural Madagascar to compare social network survey and spatial data-based networks of the same individuals. Close contact and environmental pathogen transmission pathways were modelled with the spatial data. We found that naming social partners during the surveys predicted higher close-contact rates and the proportion of environmental overlap on the spatial data-based networks. The spatial networks captured many strong and weak connections that were missed using social network surveys alone. Across networks, we found weak correlations among centrality measures (a proxy for superspreading potential). We conclude that social network surveys provide important scaffolding for understanding disease transmission pathways but miss contact-specific heterogeneities revealed by spatial data. Our analyses also highlight that the superspreading potential of individuals may vary across transmission modes. We provide detailed methods to construct networks for close-contact transmission pathogens when not all individuals simultaneously wear GPS trackers.


Assuntos
Rede Social , Humanos , Madagáscar/epidemiologia , Análise Espacial
20.
Viruses ; 13(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34960697

RESUMO

The nonvirulent infectious salmon anaemia virus (ISAV-HPR0) is the putative progenitor for virulent-ISAV, and a potential risk factor for the development of infectious salmon anaemia (ISA). Understanding the transmission dynamics of ISAV-HPR0 is fundamental to proper management and mitigation strategies. Here, we demonstrate that ISAV-HPR0 causes prevalent and transient infections in all three production stages of Atlantic salmon in the Faroe Islands. Phylogenetic analysis of the haemagglutinin-esterase gene from 247 salmon showed a clear geographical structuring into two significantly distinct HPR0-subgroups, which were designated G2 and G4. Whereas G2 and G4 co-circulated in marine farms, Faroese broodfish were predominantly infected by G2, and smolt were predominantly infected by G4. This infection pattern was confirmed by our G2- and G4-specific RT-qPCR assays. Moreover, the HPR0 variants detected in Icelandic and Norwegian broodfish were never detected in the Faroe Islands, despite the extensive import of ova from both countries. Accordingly, the vertical transmission of HPR0 from broodfish to progeny is uncommon. Phylogenetic and statistical analysis suggest that HPR0 persists in the smolt farms as "house-strains", and that new HPR0 variants are occasionally introduced from the marine environment, probably by HPR0-contaminated sea-spray. Thus, high biosecurity-including water and air intake-is required to avoid the introduction of pathogens to the smolt farms.


Assuntos
Doenças dos Peixes/transmissão , Pesqueiros , Transmissão Vertical de Doenças Infecciosas/veterinária , Isavirus/patogenicidade , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Animais , Biosseguridade , Dinamarca , Doenças dos Peixes/virologia , Isavirus/classificação , Isavirus/genética , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa