Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 238(5): 1876-1888, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36908076

RESUMO

Browning and nutrient inputs from extreme rainfall, together with increased vertical mixing due to strong winds, are more frequent in coastal ecosystems; however, their interactive effects on phytoplankton are poorly understood. We conducted experiments to quantify how browning, together with different mixing speeds (fluctuating radiation), and a nutrient pulse alter primary productivity and photosynthetic efficiency in estuarine phytoplankton communities. Phytoplankton communities (grazers excluded) were exposed simultaneously to these drivers, and key photosynthetic targets were quantified: oxygen production, electron transport rates (ETRs), and carbon fixation immediately following collection and after a 2-d acclimation/adaptation period. Increasing mixing speeds in a turbid water column (e.g. browning) significantly decreased ETRs and carbon fixation in the short term. Acclimation/adaptation to this condition for 2 d resulted in an increase in nanoplanktonic diatoms and a community that was photosynthetically more efficient; however, this did not revert the decreasing trend in carbon fixation with increased mixing speed. The observed interactive effects (resulting from extreme rainfall and strong winds) may have profound implications in the trophodynamics of highly productive system such as the Southwest Atlantic Ocean due to changes in the size structure of the community and reduced productivity.


Assuntos
Diatomáceas , Fitoplâncton , Ecossistema , Vento , Fotossíntese/efeitos da radiação
2.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613523

RESUMO

The plasma-membrane homeostasis Na+/Ca2+ exchangers (NCXs) mediate Ca2+ extrusion/entry to dynamically shape Ca2+ signaling/in biological systems ranging from bacteria to humans. The NCX gene orthologs, isoforms, and their splice variants are expressed in a tissue-specific manner and exhibit nearly 104-fold differences in the transport rates and regulatory specificities to match the cell-specific requirements. Selective pharmacological targeting of NCX variants could benefit many clinical applications, although this intervention remains challenging, mainly because a full-size structure of eukaryotic NCX is unavailable. The crystal structure of the archaeal NCX_Mj, in conjunction with biophysical, computational, and functional analyses, provided a breakthrough in resolving the ion transport mechanisms. However, NCX_Mj (whose size is nearly three times smaller than that of mammalian NCXs) cannot serve as a structure-dynamic model for imitating high transport rates and regulatory modules possessed by eukaryotic NCXs. The crystal structures of isolated regulatory domains (obtained from eukaryotic NCXs) and their biophysical analyses by SAXS, NMR, FRET, and HDX-MS approaches revealed structure-based variances of regulatory modules. Despite these achievements, it remains unclear how multi-domain interactions can decode and integrate diverse allosteric signals, thereby yielding distinct regulatory outcomes in a given ortholog/isoform/splice variant. This article summarizes the relevant issues from the perspective of future developments.


Assuntos
Células Eucarióticas , Trocador de Sódio e Cálcio , Animais , Humanos , Espalhamento a Baixo Ângulo , Difração de Raios X , Isoformas de Proteínas/metabolismo , Transporte de Íons/fisiologia , Células Eucarióticas/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Cálcio/metabolismo , Mamíferos/metabolismo
3.
J Exp Bot ; 72(2): 491-509, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064811

RESUMO

Short-term effects of pCO2 (700-380 ppm; High carbon (HC) and Low carbon (LC), respectively) and nitrate content (50-5 µM; High nitrogen (HN) and Low nitrogen (LN), respectively on photosynthesis were investigated in Ulva rigida (Chlorophyta) under solar radiation (in-situ) and in the laboratory under artificial light (ex-situ). After six days of incubation at ambient temperature (AT), algae were subjected to a 4 °C temperature increase (AT+4 °C) for 3 d. Both in-situ and ex-situ maximal electron transport rate (ETRmax) and in situ gross photosynthesis (GP), measured by O2 evolution, presented highest values under HCHN, and lowest under HCLN, across all measuring systems. Maximal quantum yield (Fv/Fm), and ETRmax of photosystem (PS) II [ETR(II)max] and PSI [ETR(I)max], decreased under HCLN at AT+4 °C. Ex situ ETR was higher than in situ ETR. At noon, Fv/Fm decreased (indicating photoinhibition), whereas ETR(II)max and maximal non-photochemical quenching (NPQmax) increased. ETR(II)max decreased under AT+ 4 °C in contrast to Fv/Fm, photosynthetic efficiency (α ETR) and saturated irradiance (EK). Thus, U. rigida exhibited a decrease in photosynthesis under acidification, changing LN, and AT+4 °C. These results emphasize the importance of studying the interaction between environmental parameters using in-situ versus ex-situ conditions, when aiming to evaluate the impact of global change on marine macroalgae.


Assuntos
Clorófitas , Ulva , Dióxido de Carbono , Clorofila , Nitratos , Oxigênio , Fotossíntese , Temperatura
4.
Glob Chang Biol ; 26(10): 5928-5941, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32525272

RESUMO

Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs ) and net photosynthetic carbon fixation (Pn ) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL ) increased with leaf temperature with strong linear correlations for ETR (Æ¿ = 0.98) and qL (Æ¿ = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non-photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary "ground-truthing" for simulations of the large predicted increases in tropical isoprene emissions with climate warming.


Assuntos
Butadienos , Hemiterpenos , Dióxido de Carbono , Transporte de Elétrons , Fotossíntese , Folhas de Planta
5.
Heliyon ; 10(6): e27675, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509895

RESUMO

The main attention of this study is to give analytic investigation on the behavior of a nanofluid transport rates in response to a continuous variation of parameters. After reducing the governing boundary layer equations in to a set of convenient ordinary differential forms, the efficient optimal homotopy analysis method has been successfully implemented to the set of nonlinear problems. In this analysis, it is found that significant variations of heat, mass and momentum transfer rates are identified with the changes in the values of magnetic field, porosity parameter and diffusion thermo effects. Among other things, the findings of this study will contribute for better understanding and predicting of fluid transport rates near cylindrical surfaces. This will help both theoretical scientists and practical engineers to estimate the degree to which various factors affect the quality of manufacturing products.

6.
Front Microbiol ; 14: 1294521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143865

RESUMO

Chlorophyll fluorescence-based estimates of primary productivity typically include dark or low-light pre-treatments to relax non-photochemical quenching (NPQ), a process that influences the relationship between PSII photochemistry and fluorescence yields. The time-scales of NPQ relaxation vary significantly between phytoplankton taxa and across environmental conditions, creating uncertainty in field-based productivity measurements derived from fluorescence. To address this practical challenge, we used fast repetition rate fluorometry to characterize NPQ relaxation kinetics in Arctic Ocean phytoplankton assemblages across a range of hydrographic regimes. Applying numerical fits to our data, we derived NPQ relaxation life times, and determined the relative contributions of various quenching components to the total NPQ signature across the different assemblages. Relaxation kinetics were best described as a combination of fast-, intermediate- and slow-relaxing processes, operating on time-scales of seconds, minutes, and hours, respectively. Across sampling locations and depths, total fluorescence quenching was dominated by the intermediate quenching component. Our results demonstrated an average NPQ relaxation life time of 20 ± 1.9 min, with faster relaxation among high light acclimated surface samples relative to lowlight acclimated sub-surface samples. We also used our results to examine the influence of NPQ relaxation on estimates of photosynthetic electron transport rates (ETR), testing the commonly held assumption that NPQ exerts proportional effects on light absorption (PSII functional absorption cross section, σPSII) and photochemical quantum efficiency (FV/FM). This assumption was violated in a number of phytoplankton assemblages that showed a significant decoupling of σPSII and FV/FM during NPQ relaxation, and an associated variability in ETR estimates. Decoupling of σPSII and FV/FM was most prevalent in samples displaying symptoms photoinhibition. Our results provide insights into the mechanisms and kinetics of NPQ in Arctic phytoplankton assemblages, with important implications for the use of FRRF to derive non-invasive, high-resolution estimates of photosynthetic activity in polar marine waters.

7.
Biochim Biophys Acta Biomembr ; 1864(1): 183792, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582763

RESUMO

The Na+/Ca2+ exchangers (NCXs) modulate the Ca2+ signaling and homeostasis in health and disease. The transport cycle turnover rates (kcat) and the kcat/Km values of eukaryotic NCXs are ~104-times higher than those of prokaryotic NCXs. Three ion-coordinating residues (out of twelve) differ between eukaryotic NCXs and NCX_Mj. The replacement of three ion-coordinating residues in NCX_Mj does not increase kcat, probably due to the structural rigidity of NCX_Mj. Phospholipids and cholesterol increase (up to 10-fold) the transport rates in the cardiac NCX1.1, but not in NCX_Mj. A lipid environment can partially contribute to the huge kinetic variances among NCXs.


Assuntos
Sinalização do Cálcio/genética , Células Eucarióticas/química , Células Procarióticas/química , Trocador de Sódio e Cálcio/metabolismo , Células Eucarióticas/metabolismo , Homeostase/genética , Humanos , Cinética , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Células Procarióticas/metabolismo , Trocador de Sódio e Cálcio/genética
8.
Sci Total Environ ; 826: 154238, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35259781

RESUMO

Aeolian sediment emission from surfaces and subsequent transport are important geological processes. The Tibet Plateau experiences strong aeolian activity in areas such as the Yarlung Zangbo River basin. The dust storms have caused grounding of aircraft, highway closures, and other consequences for the region's residents. However, few researchers have studied this activity, which means that little knowledge is available on aeolian activity to support efforts to mitigate or prevent aeolian disasters. We measured aeolian sediment transport in the middle reaches of the Yarlung Zangbo River from 2020 to 2021. Field observations showed spatial and temporal variation of the sediment transport rate, with the greatest aeolian sediment transport in spring and winter. The largest total aeolian sediment transport rate occurred over sandy desert, with the smallest emission by a floodplain grassland. The change in sediment transport rate with height followed an exponential function, but the coefficients differed among landscapes. The mean sediment transport rate was greatest above shifting sand near riverbanks (0.21 kg m-1 d-1), where the sand is exposed in the winter and spring, followed by shifting floodplain sands (0.13 kg m-1 d-1), and was lowest above a floodplain grassland (0.03 kg m-1 d-1). Mean grain size also decreased with increasing height above 0.25 m, with a minimum mean grain size (about 52.6 µm) at 3.0 m above a floodplain grassland, and maximum mean grain size (about 100.2 µm) at 3.0 m above a floodplain shifting sand surface. The spatial variation in sediment transport rates and grain size related to the proportion of fine particles in the surface material. By comparing the aeolian sediment transport over different landscapes, we found that river banks and floodplains, which had rich deposits of very fine sand, silt, and clay, were the major sources of dust in this region. Our results indicate that efforts to mitigate or prevent aeolian disasters require a focus on riverbank and floodplain deposits.


Assuntos
Sedimentos Geológicos , Rios , Poeira/análise , Fenômenos Geológicos , Tibet
9.
Cell Calcium ; 99: 102476, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34564055

RESUMO

The cytosolic pH decline from 7.2 to 6.9 results in 90% inactivation of mammalian Na+/Ca2+ exchangers (NCXs) due to protons interactions with regulatory and transport domains ("proton block"). Remarkably, the pH titration curves of mammalian and prokaryotic NCXs significantly differ, even after excluding the allosteric effects through regulatory domains. This is fascinating since "only" three (out of twelve) ion-coordinating residues (T50S, E213D, and D240N) differ between the archaeal NCX_Mj and mammalian NCXs although they contain either three or two carboxylates, respectively. To resolve the underlying mechanisms of pH-dependent regulation, the ion-coordinating residues of NCX_Mj were mutated to imitate the ion ligation arrays of mammalian NCXs; the mutational effects were tested on the ion binding/transport by using ion-flux assays and two-dimensional infrared (2D IR) spectroscopy. Our analyses revealed that two deprotonated carboxylates ligate 3Na+ or 1Ca2+ in NCX prototypes with three or two carboxylates. The Na+/Ca2+ exchange rates of NCX_Mj reach saturation at pH 5.0, whereas the Na+/Ca2+ exchange rates of the cardiac NCX1.1 gradually increase even at alkaline pHs. The T50S replacement in NCX_Mj "recapitulates" the pH titration curves of mammalian NCX by instigating an alkaline shift. Proteolytic shaving of regulatory CBD domains activates NCX1.1, although the normalized pH-titration curves are comparable in trypsin treated and untreated NCX1.1. Thus, the T50S-dependent alkaline shift sets a dynamic range for "proton block" function at physiological pH, whereas the CBDs (and other regulatory modes) modulate incremental changes in the transport rates rather than affect the shape of pH dependent curves.


Assuntos
Eucariotos , Prótons , Animais , Cálcio/metabolismo , Eucariotos/metabolismo , Transporte de Íons , Íons , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
10.
Front Microbiol ; 9: 624, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755417

RESUMO

We have assessed how varying CO2 (180, 380, and 720 µatm) and growth light intensity (40 and 400 µmol photons m-2 s-1) affected Trichodesmium erythraeum IMS101 growth and photophysiology over free iron (Fe') concentrations between 20 and 9,600 pM. We found significant iron dependencies of growth rate and the initial slope and maximal relative PSII electron transport rates (rPm). Under iron-limiting concentrations, high-light increased growth rates and rPm; possibly indicating a lower allocation of resources to iron-containing photosynthetic proteins. Higher CO2 increased growth rates across all iron concentrations, enabled growth to occur at lower Fe' concentrations, increased rPm and lowered the iron half saturation constants for growth (Km). We attribute these CO2 responses to the operation of the CCM and the ATP spent/saved for CO2 uptake and transport at low and high CO2, respectively. It seems reasonable to conclude that T. erythraeum IMS101 can exhibit a high degree of phenotypic plasticity in response to CO2, light intensity and iron-limitation. These results are important given predictions of increased dissolved CO2 and water column stratification (i.e., higher light exposures) over the coming decades.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa