Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 23(1): 767-782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386550

RESUMO

Transverse thermoelectric generation using magnetic materials is essential to develop active thermal engineering technologies, for which the improvements of not only the thermoelectric output but also applicability and versatility are required. In this study, using combinatorial material science and lock-in thermography technique, we have systematically investigated the transverse thermoelectric performance of Sm-Co-based alloy films. The high-throughput material investigation revealed the best Sm-Co-based alloys with the large anomalous Nernst effect (ANE) as well as the anomalous Ettingshausen effect (AEE). In addition to ANE/AEE, we discovered unique and superior material properties in these alloys: the amorphous structure, low thermal conductivity, and large in-plane coercivity and remanent magnetization. These properties make it advantageous over conventional materials to realize heat flux sensing applications based on ANE, as our Sm-Co-based films can generate thermoelectric output without an external magnetic field. Importantly, the amorphous nature enables the fabrication of these films on various substrates including flexible sheets, making the large-scale and low-cost manufacturing easier. Our demonstration will provide a pathway to develop flexible transverse thermoelectric devices for smart thermal management.

2.
Sensors (Basel) ; 22(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808364

RESUMO

In this work, pulse laser detectors based on the transverse thermoelectric effect of YBa2Cu3O7-δ thin films on vicinal cut LaAlO3 (001) substrates have been fabricated. The anisotropic Seebeck coefficients between ab-plane (Sab) and c-axis (Sc) of thin films are utilized to generate the output voltage signal in such kind of detectors. Fast response has been determined in these sensors, including both the rise time and the decay time. Under the irradiation of pulse laser with the pulse duration of 5-7 ns, the output voltage of these detectors shows the rise time and the decay time of 6 and 42 ns, respectively, which are much smaller than those from other materials. The small rise time in YBa2Cu3O7-δ-based detectors may be due to its low resistivity. While the high thermal conductivity and the large contribution of electronic thermal conductivity to the thermal conductivity of YBa2Cu3O7-δ are thought to be responsible for the small decay time. In addition, these detectors show good response under the irradiation of pulse lasers with a repetition rate of 4 kHz, including the precise determinations of amplitude and time. These results may pave a simple and convenient approach to manufacture the pulse laser detectors with a fast response.

3.
Adv Sci (Weinh) ; 11(18): e2308543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447187

RESUMO

Transverse thermoelectric generation converts temperature gradient in one direction into an electric field perpendicular to that direction and is expected to be a promising alternative in creating simple-structured thermoelectric modules that can avoid the challenging problems facing traditional Seebeck-effect-based modules. Recently, large transverse thermopower has been observed in closed circuits consisting of magnetic and thermoelectric materials, called the Seebeck-driven transverse magneto-thermoelectric generation (STTG). However, the closed-circuit structure complicates its broad applications. Here, STTG is realized in the simplest way to combine magnetic and thermoelectric materials, namely, by stacking a magnetic layer and a thermoelectric layer together to form a bilayer. The transverse thermopower is predicted to vary with changing layer thicknesses and peaks at a much larger value under an optimal thickness ratio. This behavior is verified in the experiment, through a series of samples prepared by depositing Fe-Ga alloy thin films of various thicknesses onto n-type Si substrates. The measured transverse thermopower reaches 15.2 ± 0.4 µV K-1, which is a fivefold increase from that of Fe-Ga alloy and much larger than the current room temperature record observed in Weyl semimetal Co2MnGa. The findings highlight the potential of combining magnetic and thermoelectric materials for transverse thermoelectric applications.

4.
Adv Mater ; 35(32): e2301339, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37308132

RESUMO

Heat current in ferromagnets can generate a transverse electric voltage perpendicular to magnetization, known as anomalous Nernst effect (ANE). ANE originates intrinsically from the combination of large Berry curvature and density of states near the Fermi energy. It shows technical advantages over the conventional longitudinal Seebeck effect in converting waste heat to electricity due to its unique transverse geometry. However, materials showing giant ANE remain to be explored. Herein,  a large ANE thermopower of Syx ≈ 2 µV K-1 at room temperature in ferromagnetic Fe3 Pt epitaxial films is reported, which also show a giant transverse thermoelectric conductivity of αyx ≈ 4 A K-1  m-1 and a remarkable coercive field of 1300 Oe. The theoretical analysis reveals that the strong spin-orbit interaction in addition to the hybridization between Pt 5d and Fe 3d electrons leads to a series of distinct energy gaps and large Berry curvature in the Brillouin zone, which is the key for the large ANE. These results highlight the important roles of both Berry curvature and spin-orbit coupling in achieving large ANE at zero magnetic field, providing pathways to explore materials with giant transverse thermoelectric effect without an external magnetic field.

5.
Adv Mater ; 35(41): e2305622, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37565798

RESUMO

Terahertz (THz) radiation is a powerful tool with widespread applications ranging from imaging, sensing, and broadband communications to spectroscopy and nonlinear control of materials. Future progress in THz technology depends on the development of efficient, structurally simple THz emitters that can be implemented in advanced miniaturized devices. Here, it is shown how the natural electronic anisotropy of layered conducting transition metal oxides enables the generation of intense terahertz radiation via the transverse thermoelectric effect. In thin films grown on off-cut substrates, femtosecond laser pulses generate ultrafast out-of-plane temperature gradients, which in turn launch in-plane thermoelectric currents, thus allowing efficient emission of the resulting THz field out of the film structure. This scheme is demonstrated in experiments on thin films of the layered metals PdCoO2 and La1.84 Sr0.16 CuO4 , and model calculations that elucidate the influence of the material parameters on the intensity and spectral characteristics of the emitted THz field are presented. Due to its simplicity, the method opens up a promising avenue for the development of highly versatile THz sources and integrable emitter elements.

6.
Micromachines (Basel) ; 13(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35208357

RESUMO

Transverse thermoelectric performance of the artificially tilted multilayer thermoelectric device (ATMTD) is very difficult to be optimized, due to the large degree freedom in device design. Herein, an ATMTD with Fe and Bi2Te2.7Se0.3 (BTS) materials was proposed and fabricated. Through high-throughput calculation of Fe/BTS ATMTD, a maximum of calculated transverse thermoelectric figure of merit of 0.15 was obtained at a thickness ratio of 0.49 and a tilted angle of 14°. For fabricated ATMTD, the whole Fe/BTS interface is closely connected with a slight interfacial reaction. The optimizing Fe/BTS ATMTD with 12 mm in length, 6 mm in width and 4 mm in height has a maximum output power of 3.87 mW under a temperature difference of 39.6 K. Moreover the related power density per heat-transfer area reaches 53.75 W·m-2. This work demonstrates the performance of Fe/BTS ATMTD, allowing a better understanding of the potential in micro-scaled devices.

7.
ACS Appl Mater Interfaces ; 14(34): 39053-39061, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35984410

RESUMO

Artificially tilted multilayer thermoelectric devices (ATMTDs) have attracted extensive attention because of their numerous advantages, such as high integration, great structural freedom, and large transverse Seebeck coefficients. ATMTDs are composed of numerous alternating stackings of two types of materials with large differences in electrical and thermal transport. Therefore, it is of great interest to find ATMTDs with both high transverse thermoelectric performance and good interfacial stability to develop their practical application. In this work, cobalt (Co) and Bi0.5Sb1.5Te3 (BST) are chosen to prepare Co/BST ATMTDs. The interfacial structure and composition of Co/BST are characterized, and its interfacial stability and transverse thermoelectric performance are evaluated. The results show that the thickness of the Co/BST interfacial reaction layer is about 4 µm. Annealing at 473 K for 32 h does not increase the thickness, which indicates better interfacial stability than Ni/BST. After structure optimization, Co/BST ATMTD has ZTzx = 0.41, which is second only to YbAl3/BST ATMTDs. Meanwhile, the transverse Seebeck coefficient reaches -120.38 µV/K. The outstanding interfacial stability and transverse thermoelectric performance promise excellent thermal response and refrigeration performance with Co/BST ATMTDs.

8.
Nanoscale Res Lett ; 14(1): 367, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31807939

RESUMO

Significant enhancement of light-induced transverse thermoelectric (LITT) effect in tilted BiCuSeO film has been achieved via introduction of an ultra-thin layer of gold nanoparticles (AuNPs) with the thickness of a few nanometers. In both cases of pulsed and continuous light irradiation, about two times increment in the LITT voltage sensitivity is observed for the BiCuSeO film coated with 4-nm-thick AuNPs layer. This can be ascribed to the increased photo-thermal conversion efficiency in the LITT effect owing to the efficient usage of the incident light of AuNPs layer. Thicker AuNPs layer will suppress the voltage sensitivity increment due to the electrical connectivity effect. This work provides an effective strategy for optimizing the performance of thermal-type optical detectors based on the LITT effect.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa