RESUMO
Seed treatment with pesticides is an extended agricultural practice with a high risk to granivorous birds that consume those seeds. To characterize that risk, it is necessary to understand the ecological factors that determine the exposure chances of birds to treated seeds. We investigated how pesticide uptake by red-legged partridges was related to cultivated plant ingestion and to the use of recently sown fields. We analyzed pesticide residues in 144 fecal samples from 32 flocks and determined the plant diet composition using DNA metabarcoding. Habitat use was studied through the monitoring of 15 GPS-tagged partridges. We confirmed, through the analysis of seeds, that >80% of cereal fields from the area had seeds treated with triazole fungicides. Tebuconazole was detected in 16.6% of partridges' feces. During the sowing season, cultivated plants accounted for half of the plant diet, but no association was found between cultivated plant consumption and pesticide intake. GPS tracking revealed that tebuconazole was detected in feces when partridges had recently used sown fields, whereas nonexposed partridges showed no overlap with recently sown areas. Our results highlight the need to incorporate field ecology into the characterization of pesticide exposure to improve the efficacy of environmental risk assessment.
RESUMO
Thiamethoxam is a neonicotinoid insecticide widely applied in the Canadian Prairies. It has been detected in surface waters of agro-ecosystems, including wetlands, but the potential effects on non-target invertebrate communities in these wetlands have not been well characterized. In an effort to understand better the fate of thiamethoxam in wetlands and the response of invertebrates (zooplankton and emergent insects), model systems were used to mimic wetland flooding into planted fields. Outdoor mesocosms were treated with a single application of thiamethoxam-treated canola seeds at three treatment levels based on a recommended seeding rate (i.e., 6 kg/ha; 1×, 10×, and 100× seeding rate) and monitored over ten weeks. The mean half-life of thiamethoxam in the water column was 6.2 d. There was no ecologically meaningful impact on zooplankton abundances or community structure among treatments. Statistically significant differences were observed in aquatic insect abundance between control mesocosms and the two greatest thiamethoxam treatments (10× and 100× seeding rate). The observed results indicate exposure to thiamethoxam at environmentally relevant concentrations likely does not represent a significant ecological risk to abundance and community structure of wetland zooplankton and emergent insects.
Assuntos
Inseticidas , Tiametoxam , Poluentes Químicos da Água , Animais , Canadá , Ecossistema , Inseticidas/análise , Inseticidas/toxicidade , Invertebrados , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Dinâmica Populacional , Tiametoxam/análise , Tiametoxam/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Triazole fungicides are the most widely used products to treat cereal seeds. Granivorous birds, such as red-legged partridges (Alectoris rufa), which consume seeds left on the surface of fields after sowing, have a high risk of exposure. As triazole fungicides can affect sterol synthesis, we tested the hypothesis that treated seed consumption could alter the synthesis of sex hormones and reduce the reproductive capacity of partridges. We exposed adult partridges to seeds treated with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two) simulating a field exposure during the late autumn sowing season. All treatments produced biochemical changes and an overexpression of genes encoding for enzymes involved in the biosynthesis of sterols and steroid hormones, such as PMVK, ABCA1, MVD, PSCK9, DHCR7 and HSD17B7. Plasma levels of oestradiol were reduced in partridges exposed to tebuconazole. We also monitored reproduction 3 months after exposure (laying date, egg fertilization and hatching rates). We observed a 14-day delay in the laying onset of partridges that had been exposed to flutriafol as compared to controls. These results show that the consumption of seeds treated with triazole fungicides has the potential to affect granivorous bird reproduction. We recommend the evaluation of lagged reproductive effects as part of the protocols of environmental risk assessment of pesticides in wild birds in light of the effects resulting from the exposure to triazole-treated seeds.
Assuntos
Fungicidas Industriais , Galliformes , Animais , Ingestão de Alimentos , Fungicidas Industriais/toxicidade , Reprodução , Triazóis/toxicidadeRESUMO
Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.
Assuntos
Fungicidas Industriais , Galliformes , Animais , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Codorniz , Galinhas , Triazóis/toxicidade , Triazóis/metabolismo , Expressão Gênica , EsteróisRESUMO
The treatment of seeds with pesticides is an extended practice in current agriculture. There is a high risk of exposure in granivorous birds, such as the red-legged partridge (Alectoris rufa), that can consume those seeds remaining on the surface during sowing. Fungicide exposure could in turn affect bird reproductive capacity. To better understand to what extent triazole fungicides are a threat to granivorous birds, we need an easy and reliable method to quantify field exposure. In this study, we tested a novel non-invasive method to detect the presence of triazole fungicide residues in farmland bird faeces. We experimentally exposed captive red-legged partridges to validate the method, and then applied it in a real scenario to assess exposure of wild partridges. We exposed adult partridges to seeds treated with two formulations containing triazole fungicides as active ingredients: Vincit®Minima (flutriafol 2.5%) and Raxil®Plus (prothioconazole 25% and tebuconazole 15%). We collected two types of faeces (caecal and rectal samples) immediately after exposure and 7 days later and quantified the concentrations of the three triazoles and their common metabolite (1,2,4-triazole). The three active ingredients and 1,2,4-triazole were only detected in faeces collected immediately after exposure. Triazole fungicide detection rates in rectal stool were 28.6%, 73.3% and 80% for flutriafol, prothioconazole and tebuconazole, respectively. In caecal samples, detection rates were 40%, 93.3% and 33.3%, respectively. 1,2,4-triazole was detected in 53% of rectal samples. For an applied use of the method in the field, we collected 43 faecal samples from wild red-legged partridges during autumn cereal seed sowing and found detectable levels of tebuconazole in 18.6% of the analysed wild partridges. The results of the experiment were then used to estimate actual exposure levels from this prevalence value found in wild birds. Our study shows that faecal analysis can be a useful tool to assess farmland bird exposure to triazole fungicides, when samples are fresh and the method has been validated for the detection of target molecules.
Assuntos
Fungicidas Industriais , Galliformes , Animais , Fungicidas Industriais/toxicidade , Fungicidas Industriais/análise , Fazendas , Sementes/química , Codorniz , Triazóis/toxicidade , Triazóis/análiseRESUMO
Sown seeds are a key component of many farmland birds' diets due to natural food shortages in autumn and winter. Because these seeds are often treated with pesticides, their ingestion by birds can result in toxic effects. For risk assessment, data on treated seed toxicity should be combined with information about exposure risk for wild birds and the factors that modulate it. We characterized the exposure of red-legged partridges to pesticide-treated seeds through the analysis of digestive contents of birds shot by hunters (n = 194) in an agricultural region in central Spain. We measured the contribution of sown seeds to the partridges' diet and how it related to pesticide exposure. Moreover, we evaluated the influence of landscape composition on the intake of sown seeds and pesticides by partridges. During peak sowing time, seeds constituted half (50.7%) of the fresh biomass ingested by partridges, which consumed mostly winter cereal seeds (42.3% of biomass). Residues of seven fungicides and one insecticide (active ingredients) were detected in 33.0% of birds. The presence of pesticides in digestive contents was linked to the ingestion of cereal sown seeds. Moreover, dietary exposure of birds to pesticides was modulated by landscape characteristics, being lower in areas with heterogeneous landscapes, greater habitat mosaic and more natural vegetation. The estimated dietary intake of pesticides resulting from our field observations, in combination with experimental data on pesticide toxicity, raise concerns about the risks that pesticide-treated cereal seeds pose to granivorous bird populations. Our results highlight the importance of farming landscape composition and diversification, which should be considered as a priority in the agricultural policy to mitigate pesticide risks to farmland birds through the consumption of treated seeds.
Assuntos
Fungicidas Industriais , Galliformes , Inseticidas , Animais , Fungicidas Industriais/toxicidade , Inseticidas/análise , Inseticidas/toxicidade , Sementes/química , EspanhaRESUMO
Purpose: To elucidate the effects during the vegetative growth of pre-sowing magnetic treatments on water relations, photosynthesis and plant growth in tomato (Vyta) plants under greenhouse conditions.Materials and methods: Tomato seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 120 mT (rms) for 10 min and at 80 mT (rms) for 5 min. Non-treated seeds were used as controls. Plants were grown in polystyrene trays and water relations, photosynthesis and plant growth were measured.Results: Plants from magnetically treated seeds maintained better leaf water status in terms of increases in leaf water potential, leaf osmotic potential, leaf turgor potential and relative water content, and decreases in stomatal conductance and transpiration rate. Net photosynthesis rate, chlorophyll a, chlorophyll b, carotenoids and total chlorophyll contents increase in plants from magnetically exposed seeds compared to controls. The MF treatments lead to a notable increase in root length, plant height, root and shoot dry mass, leaf area per plant, and root and shoot relative growth rates.Conclusions: Application of full-wave rectified sinusoidal non-uniform MF as a pre-sowing treatment has the potential to improve tomato plant vegetative growth through the enhancement of water relations and photosynthesis.
Assuntos
Campos Magnéticos , Fotossíntese , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Água/metabolismo , Fatores de TempoRESUMO
Neonicotinoid pesticides are applied to seeds and are known to cause lethal and sub-lethal effects in birds and mammals. Neonicotinoid-treated seeds could be available to wildlife through spillage or exposed seeds near or at the soil surface due to incomplete or shallow drilling. We quantified seed spills that may occur during loading or refilling the hopper at a landscape-scale using road-based surveys. We also quantified undrilled seeds in 1-m2 frames on the soil in the center and corner of fields to obtain estimates at the field scale. We broadcast seeds on the soil surface of a tilled field and left them for 0, 1, 2, 4, 8, 16, and 30â¯days to quantify the decrease of neonicotinoids under field conditions. Lastly, we documented wildlife at neonicotinoid-treated seed spills with trail cameras. We estimated the number of spills during planting to be 3496 (95% CI: 1855-5138) and 2609 (95% CI: 862-4357) for corn, 11,009 (95% CI: 6950-15,067) and 21,105 (95% CI: 6162-36,048) for soybean, and 830 (95% CI: 160-1500) and 791 (95% CI: 0-1781) for wheat in 2016 and 2017, respectively. Exposed seeds were present at the soil surface in 35% of 71 fields. The probability that seeds were present on the soil surface was higher for soybeans (18.8 and 49.4% in the center and corners, respectively) than for corn (1.6 and 2.7%, respectively), and seed densities were also higher (1.04 vs 0.07â¯seeds/m2, respectively). Neonicotinoids decreased rapidly on seeds on the soil surface but persisted as long as 30â¯days. Over a dozen species of birds and mammals consumed seeds at simulated spills, with an average time for birds to find spills of 1.3⯱â¯1.5â¯days and an average time to consumption of 4.1⯱â¯3.4â¯days. Seeds are abundant on the soil surface for wildlife to consume during the spring planting season and should be considered in pesticide risk assessments.
Assuntos
Glycine max , Inseticidas/análise , Neonicotinoides/análise , Sementes/química , Poluentes do Solo/análise , Triticum , Agricultura , Monitoramento Ambiental , Guanidinas/análise , Minnesota , Nitrocompostos/análise , Glycine max/crescimento & desenvolvimento , Tiametoxam/análise , Tiazóis/análise , Triticum/crescimento & desenvolvimentoRESUMO
The use of neonicotinoid insecticides in agriculture is now recognized for the health risks it poses to non-target wildlife, with associated honey bee mortality especially concerning. Research directed toward the presence and effects of these pesticides on terrestrial vertebrates that consume neonicotinoid-coated seeds, such as wild turkeys (Meleagris gallopavo silvestris), is lacking. This study used liquid chromatography attached to a tandem mass spectrometer to assess the liver from 40 wild turkeys for neonicotinoid and other pesticide residues and compared detected levels of these contaminants across the southern Ontario, Canada. Nine (22.5%) wild turkeys had detectible levels of neonicotinoid residues-clothianidin in eight, and thiamethoxam in three. Two (5.0%) of these turkeys had detectable levels of both clothianidin and thiamethoxam. Fuberidazole was detected in two (5.0%) wild turkeys. The highest level of thiamethoxam detected was 0.16 ppm, while clothianidin was detected at 0.12 ppm, and fuberidazole at 0.0094 ppm. Knowledge of exposure in free-ranging wildlife is critical for better understanding the effects of neonicotinoids on wildlife health; thus, these data help establish baseline data for southern Ontario wild turkeys and provide context for reference values in future analyses.
Assuntos
Guanidinas/química , Neonicotinoides/química , Praguicidas/análise , Tiazóis/química , Agricultura , Animais , Animais Selvagens , Abelhas , Ontário , Espectrometria de Massas em Tandem , PerusRESUMO
10.1601/nm.2592 strain RM1-1-4 is a rhizosphere colonizer of oilseed rape. A previous study has shown that this motile, Gram-negative, non-sporulating bacterium is an effective stress protecting and biocontrol agent, which protects their hosts against abiotic and biotic stresses. Here, we announce and describe the complete genome sequence of P. corrugata RM1-1-4 consisting of a single 6.1 Mb circular chromosome that encodes 5189 protein coding genes and 85 RNA-only encoding genes. Genome analysis revealed genes predicting functions such as detoxifying mechanisms, stress inhibitors, exoproteases, lipoproteins or volatile components as well as rhizobactin siderophores and spermidine. Further analysis of its genome will help to identify traits promising for stress protection, biocontrol and plant growth promotion properties.
RESUMO
Northern bobwhite (quail) (Colinus virginianus) and scaled quail (Callipepla squamata) populations have declined dramatically in the Rolling Plains ecoregion of Texas and Oklahoma (USA). There is rising concern about potential toxicity of neonicotinoids to birds. To investigate this concern, the authors examined crops of 81 northern bobwhite and 17 scaled quail to determine the presence or absence of seeds treated with 3 neonicotinoids (clothianidin, imidacloprid, and thiamethoxam). No treated seeds were found in the 98 crops examined. Liver samples from all 98 quail were collected and analyzed for neonicotinoid residues. Analysis revealed very low concentrations of neonicotinoids within the quail liver samples. The results suggest there is little to no risk of direct toxicity to quail from neonicotinoids. Environ Toxicol Chem 2016;35:1511-1515. © 2015 SETAC.