Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
FEMS Yeast Res ; 22(1)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262697

RESUMO

Schizosaccharomyces pombe is an established yeast model for studying the cellular mechanisms conserved in humans, such as the DNA replication checkpoint. The replication checkpoint deals with replication stress caused by numerous endogenous and exogenous factors that perturb fork movement. If undealt with, perturbed forks collapse, causing chromosomal DNA damage or cell death. Hydroxyurea (HU) is an inhibitor of ribonucleotide reductase (RNR) commonly used in checkpoint studies. It produces replication stress by depleting dNTPs, which slows the movement of ongoing forks and thus activates the replication checkpoint. However, HU also causes side effects such as oxidative stress, particularly under chronic exposure conditions, which complicates the studies. To find a drug that generates replication stress more specifically, we tested three other RNR inhibitors gemcitabine, guanazole and triapine in S. pombe under various experimental conditions. Our results show that guanazole and triapine can produce replication stress more specifically than HU under chronic, not acute drug treatment conditions. Therefore, using the two drugs in spot assay, the method commonly used for testing drug sensitivity in yeasts, should benefit the checkpoint studies in S. pombe and likely the research in other model systems.


Assuntos
Ribonucleotídeo Redutases , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA , Desoxicitidina/análogos & derivados , Inibidores Enzimáticos/metabolismo , Guanazol , Humanos , Hidroxiureia/farmacologia , Piridinas , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/farmacologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiossemicarbazonas , Gencitabina
2.
Biometals ; 33(4-5): 201-215, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32757166

RESUMO

Iron chelators have long been a target of interest as anticancer agents. Iron is an important cellular resource involved in cell replication, metabolism and growth. Iron metabolism is modulated in cancer cells reflecting their increased replicative demands. Originally, iron chelators were first developed for use in iron overload disorders, however, their potential as anticancer agents has been gaining increasing interest. This is due, in part, to the downstream effects of iron depletion such as the inhibition of proliferation through ribonucleotide reductase activity. Additionally, some chelators form redox active metal complexes with iron resulting in the production of reactive oxygen species and oxidative stress. Newer synthetic iron chelators such as Deferasirox, Triapine and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicrbazone (Dp44mt) have improved pharmacokinetic properties over the older chelator Deferoxamine. This review examines and discusses the various iron chelators that have been trialled for cancer therapy including both preclinical and clinical studies. The successes and shortcomings of each of the chelators and their use in combination therapies are highlighted and future potential in the cancer therapy world is considered.


Assuntos
Antineoplásicos/uso terapêutico , Quelantes de Ferro/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Humanos , Quelantes de Ferro/química , Quelantes de Ferro/metabolismo
3.
Int J Mol Sci ; 20(12)2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31234559

RESUMO

An electron paramagnetic resonance (EPR) method was used to determine the concentration of the antitumor agent Triapine in BEAS-2B cells when Triapine was bound to iron (Fe). Knowledge of the concentration of Fe-Triapine in tumor cells may be useful to adjust the administration of the drug or to adjust iron uptake in tumor cells. An EPR spectrum is obtained for Fe(3+)-Triapine, Fe(3+)(Tp)2+, in BEAS-2B cells after addition of Fe(3+)(Tp)2+. Detection of the low spin signal for Fe(3+)(Tp)2+ shows that the Fe(3+)(Tp)2+ complex is intact in these cells. It is proposed that Triapine acquires iron from transferrin in cells including tumor cells. Here, it is shown that iron from purified Fe-transferrin is transferred to Triapine after the addition of ascorbate. To our knowledge, this is the first time that the EPR method has been used to determine the concentration of an iron antitumor agent in cells.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ferro/análise , Piridinas/análise , Tiossemicarbazonas/análise , Ácido Ascórbico/química , Células Cultivadas , Humanos , Ferro/química , Piridinas/química , Tiossemicarbazonas/química , Transferrina/metabolismo
5.
Biomed Chromatogr ; 29(9): 1380-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25677991

RESUMO

Triapine is an inhibitor of ribonucleotide reductase (RNR). Studies have shown that triapine significantly decreases the activity of RNR and enhanced the radiation-mediated cytotoxicity in cervical and colon cancer. In this work, we have developed and validated a selective and sensitive LC-MS/MS method for the determination of triapine in human plasma. In this method, 2-[(3-fluoro-2-pyridinyl)methylene] hydrazinecarbothioamide (NSC 266749) was used as the internal standard (IS); plasma samples were prepared by deproteinization with acetonitrile; tripaine and the IS were separated on a Waters Xbridge Shield RP18 column (3.5 µm; 2.1 × 50 mm) using a mobile phase containing 25.0% methanol and 75.0% ammonium bicarbonate buffer (10.0 mM, pH 8.50; v/v); column eluate was monitored by positive turbo-ionspray tandem mass spectrometry; and quantitation of triapine was carried out in multiple-reaction-monitoring mode. The method developed had a linear calibration range of 0.250-50.0 ng/mL with correlation coefficient of 0.999 for triapine in human plasma. The IS-normalized recovery and the IS-normalized matrix factor of triapine were 101-104% and 0.89-1.05, respectively. The accuracy expressed as percentage error and precision expressed as coefficient of variation were ≤±6 and ≤8%, respectively. The validated LC-MS/MS method was applied to the measurement of triapine in patient samples from a phase I clinical trial.


Assuntos
Cromatografia Líquida/métodos , Inibidores Enzimáticos/sangue , Piridinas/sangue , Espectrometria de Massas em Tandem/métodos , Tiossemicarbazonas/sangue , Humanos , Ribonucleotídeo Redutases/antagonistas & inibidores
6.
Virology ; 593: 110014, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38401340

RESUMO

African swine fever (ASF) caused by African swine fever virus (ASFV) is a highly infectious and lethal swine disease. Currently, there is only one novel approved vaccine and no antiviral drugs for ASFV. In the study, a high-throughput screening of an FDA-approved drug library was performed to identify several drugs against ASFV infection in primary porcine alveolar macrophages. Triapine and cytarabine hydrochloride were identified as ASFV infection inhibitors in a dose-dependent manner. The two drugs executed their antiviral activity during the replication stage of ASFV. Furthermore, molecular docking studies showed that triapine might interact with the active center Fe2+ in the small subunit of ASFV ribonucleotide reductase while cytarabine hydrochloride metabolite might interact with three residues (Arg589, Lys593, and Lys631) of ASFV DNA polymerase to block new DNA chain extension. Taken together, our results suggest that triapine and cytarabine hydrochloride displayed significant antiviral activity against ASFV in vitro.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Piridinas , Tiossemicarbazonas , Suínos , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Febre Suína Africana/prevenção & controle , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/metabolismo , Citarabina/metabolismo , Citarabina/farmacologia , Replicação Viral
7.
Int J Pharm ; 636: 122844, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36925025

RESUMO

Pancreatic cancer is a malignant disease with high mortality, and its systemic treatment strategy mainly focuses on chemotherapy. Yet, the overall prognosis of pancreatic cancer patients is still extremely poor with a low survival rate. Gemcitabine (GEM) is a widely used chemotherapeutic agent for the treatment of pancreatic cancer. However, GEM chemoresistance remains the major challenge. In this study, we prepared calcium carbonate nanoparticles (CaCO3 NPs) loaded with a nucleotide reductase inhibitor (Triapine) and GEM to suppress the GEM resistance of pancreatic cancer cells (PANC-1/GEM) and solve the problem of poor solubility of Triapine. CaCO3-GEM-Triapine NPs nano-formulations enhanced the therapeutic effect of GEM-based chemotherapy by inhibiting cancer cell proliferation, migration, and resistance to GEM using both 2D PANC-1/GEM cells and 3D tumor spheroids. The study indicated that CaCO3 NPs loaded with GEM and Triapine could provide an effective treatment option to overcome drug resistance in pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
8.
Anticancer Agents Med Chem ; 23(17): 1958-1965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565554

RESUMO

BACKGROUND: The development of chemotherapy resistance in prostate cancer (PCa) patients poses a significant obstacle to disease progression. Ribonucleotide reductase is a crucial enzyme for cell division and tumor growth. Triapine, an inhibitor of ribonucleotide reductase, has shown strong anti-tumor activity in various types of cancers. However, the effect of triapine on docetaxel-resistant (DR) human PCa cells has not been explored previously. AIM: This study aimed to examine the potential anti-proliferative effects of triapine in PC3-DR (docetaxel-resistant) cells. METHODS: Cell viability was determined by the MTT test, and apoptosis and cell cycle progression were analyzed by image-based cytometer. mRNA and protein expression were assessed by RT-qPCR and western blot, respectively. RESULTS: Triapine administration significantly reduced PC3 and PC3-DR cells' survival, while the cytotoxic effect was higher in PC3-DR cells. Cell death resulting from inhibition of ribonucleotide reductase was mediated by endoplasmic reticulum stress, induction of apoptosis, and cell cycle arrest. The findings were supported by the upregulation of caspases, Bax, Bak, P21, P27, P53, TNF-α, FAS, and FASL, and downregulation of Bcl2, Bcl-XL, cyclin-dependent kinase 2 (CDK2), CDK4, cyclins, and heat shock proteins expression. According to the data, the reduction of ABC transporter proteins and NF-ĸB expression may play a role in triapine-mediated cytotoxicity in docetaxel-resistant cells. CONCLUSION: Based on our findings, triapine emerges as a promising chemotherapeutic approach for combating docetaxel- resistant prostate cancer.


Assuntos
Neoplasias da Próstata , Ribonucleotídeo Redutases , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Ribonucleotídeo Redutases/farmacologia , Ribonucleotídeo Redutases/uso terapêutico , Apoptose , Neoplasias da Próstata/metabolismo , Estresse do Retículo Endoplasmático , Linhagem Celular Tumoral
9.
J Cancer Res Clin Oncol ; 149(11): 8605-8617, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37097390

RESUMO

PURPOSE: Ewing's sarcoma is a highly malignant childhood tumour whose outcome has hardly changed over the past two decades despite numerous attempts at chemotherapy intensification. It is therefore essential to identify new treatment options. The present study was conducted to explore the effectiveness of combined inhibition of two promising targets, ATR and ribonucleotide reductase (RNR), in Ewing's sarcoma cells. METHODS: Effects of the ATR inhibitor VE821 in combination with the RNR inhibitors triapine and didox were assessed in three Ewing's sarcoma cell lines with different TP53 status (WE-68, SK-ES-1, A673) by flow cytometric analysis of cell death, mitochondrial depolarisation and cell cycle distribution as well as by caspase 3/7 activity determination, by immunoblotting and by real-time RT-PCR. Interactions between inhibitors were evaluated by combination index analysis. RESULTS: Single ATR or RNR inhibitor treatment produced small to moderate effects, while their combined treatment produced strong synergistic ones. ATR and RNR inhibitors elicited synergistic cell death and cooperated in inducing mitochondrial depolarisation, caspase 3/7 activity and DNA fragmentation, evidencing an apoptotic form of cell death. All effects were independent of functional p53. In addition, VE821 in combination with triapine increased p53 level and induced p53 target gene expression (CDKN1A, BBC3) in p53 wild-type Ewing's sarcoma cells. CONCLUSION: Our study reveals that combined targeting of ATR and RNR was effective against Ewing's sarcoma in vitro and thus rationalises an in vivo exploration into the potential of combining ATR and RNR inhibitors as a new strategy for the treatment of this challenging disease.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Humanos , Criança , Sarcoma de Ewing/patologia , Neoplasias Ósseas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Caspase 3/metabolismo , Apoptose , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
10.
Cancer Lett ; 570: 216308, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37482342

RESUMO

Glioblastoma (GBM) is an aggressive malignant primary brain tumor. Radioresistance largely contributes to poor clinical outcomes in GBM patients. We targeted ribonucleotide reductase subunit 2 (RRM2) with triapine to radiosensitize GBM. We found RRM2 is associated with increasing tumor grade, is overexpressed in GBM over lower grade gliomas and normal tissue, and is associated with worse survival. We found silencing or inhibition of RRM2 by siRNA or triapine sensitized GBM cells to ionizing radiation (IR) and delayed resolution of IR-induced γ-H2AX nuclear foci. In vivo, triapine and IR reduced tumor growth and increased mouse survival. Intriguingly, triapine led to RRM2 upregulation and CHK1 activation, suggesting a CHK1-dependent RRM2 upregulation following RRM2 inhibition. Consistently, silencing or inhibition of CHK1 with rabusertib abolished the triapine-induced RRM2 upregulation. Accordingly, combining rabusertib and triapine resulted in synthetic lethality in GBM cells. Collectively, our results suggest RRM2 is a promising therapeutic target for GBM, and targeting RRM2 with triapine sensitizes GBM cells to radiation and independently induces synthetic lethality of GBM cells with CHK1 inhibition. Our findings suggest combining triapine with radiation or rabusertib may improve therapeutic outcomes in GBM.


Assuntos
Glioblastoma , Animais , Camundongos , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Piridinas/farmacologia , Mutações Sintéticas Letais
11.
Cell Oncol (Dordr) ; 46(5): 1399-1413, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37086345

RESUMO

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas that typically develop in the setting of neurofibromatosis type 1 (NF1) and cause significant morbidity. Conventional therapies are often ineffective for MPNSTs. Ribonucleotide reductase subunit M2 (RRM2) is involved in DNA synthesis and repair, and is overexpressed in multiple cancers. However, its role in NF1-associated MPNSTs remains unknown. Our objective was to determine the therapeutic and prognostic potential of RRM2 in NF1-associated MPNSTs. METHODS: Identification of hub genes was performed by using NF1-associated MPNST microarray datasets. We detected RRM2 expression by immunochemical staining in an MPNST tissue microarray, and assessed the clinical and prognostic significance of RRM2 in an MPNST cohort. RRM2 knockdown and the RRM2 inhibitor Triapine were used to assess cell proliferation and apoptosis in NF1-associated MPNST cells in vitro and in vivo. The underlying mechanism of RRM2 in NF1-associated MPNST was revealed by transcriptome analysis. RESULTS: RRM2 is a key hub gene and its expression is significantly elevated in NF1-associated MPNST. We revealed that high RRM2 expression accounted for a larger proportion of NF1-associated MPNSTs and confirmed the correlation of high RRM2 expression with poor overall survival. Knockdown of RRM2 inhibited NF1-associated MPNST cell proliferation and promoted apoptosis and S-phase arrest. The RRM2 inhibitor Triapine displayed dose-dependent inhibitory effects in vitro and induced significant tumor growth reduction in vivo in NF1-associated MPNST. Analysis of transcriptomic changes induced by RRM2 knockdown revealed suppression of the AKT-mTOR signaling pathway. Overexpression of RRM2 activates the AKT pathway to promote NF1-associated MPNST cell proliferation. CONCLUSIONS: RRM2 expression is significantly elevated in NF1-associated MPNST and that high RRM2 expression correlates with poorer outcomes. RRM2 acts as an integral part in the promotion of NF1-associated MPNST cell proliferation via the AKT-mTOR signaling pathway. Inhibition of RRM2 may be a promising therapeutic strategy for NF1-associated MPNST.


Assuntos
Neurofibromatose 1 , Neurofibrossarcoma , Humanos , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibrossarcoma/complicações , Neurofibrossarcoma/patologia , Neurofibrossarcoma/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Prognóstico , Serina-Treonina Quinases TOR/metabolismo
12.
Biomolecules ; 12(6)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740940

RESUMO

Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.


Assuntos
Neoplasias , Ribonucleotídeo Redutases , Domínio Catalítico , Difosfatos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Ribonucleotídeo Redutases/metabolismo
13.
Biomolecules ; 11(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207929

RESUMO

A series of thiosemicarbazone-coumarin hybrids (HL1-HL3 and H2L4) has been synthesised in 12 steps and used for the preparation of mono- and dinuclear copper(II) complexes, namely Cu(HL1)Cl2 (1), Cu(HL2)Cl2 (2), Cu(HL3)Cl2 (3) and Cu2(H2L4)Cl4 (4), isolated in hydrated or solvated forms. Both the organic hybrids and their copper(II) and dicopper(II) complexes were comprehensively characterised by analytical and spectroscopic techniques, i.e., elemental analysis, ESI mass spectrometry, 1D and 2D NMR, IR and UV-vis spectroscopies, cyclic voltammetry (CV) and spectroelectrochemistry (SEC). Re-crystallisation of 1 from methanol afforded single crystals of copper(II) complex with monoanionic ligand Cu(L1)Cl, which could be studied by single crystal X-ray diffraction (SC-XRD). The prepared copper(II) complexes and their metal-free ligands revealed antiproliferative activity against highly resistant cancer cell lines, including triple negative breast cancer cells MDA-MB-231, sensitive COLO-205 and multidrug resistant COLO-320 colorectal adenocarcinoma cell lines, as well as in healthy human lung fibroblasts MRC-5 and compared to those for triapine and doxorubicin. In addition, their ability to reduce the tyrosyl radical in mouse R2 protein of ribonucleotide reductase has been ascertained by EPR spectroscopy and the results were compared with those for triapine.


Assuntos
Cobre/química , Cumarínicos/síntese química , Piridinas/síntese química , Tiossemicarbazonas/síntese química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Cumarínicos/química , Cumarínicos/farmacologia , Cristalografia por Raios X/métodos , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Piridinas/química , Relação Estrutura-Atividade , Tiossemicarbazonas/química
14.
Cancer Chemother Pharmacol ; 86(5): 633-640, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989483

RESUMO

PURPOSE: To investigate the metabolic pathways of triapine in primary cultures of human hepatocytes and human hepatic subcellular fractions; to investigate interactions of triapine with tenofovir and emtricitabine; and to evaluate triapine as a perpetrator of drug interactions. The results will better inform future clinical studies of triapine, a radiation sensitizer currently being studied in a phase III study. METHODS: Triapine was incubated with human hepatocytes and subcellular fractions in the presence of a number of inhibitors of drug metabolizing enzymes. Triapine depletion was monitored by LC-MS/MS. Tenofovir and emtricitabine were co-incubated with triapine in primary cultures of human hepatocytes. Triapine was incubated with a CYP probe cocktail and human liver microsomes, followed by LC-MS/MS monitoring of CYP specific metabolite formation. RESULTS: Triapine was not metabolized by FMO, AO/XO, MAO-A/B, or NAT-1/2, but was metabolized by CYP450s. CYP1A2 accounted for most of the depletion of triapine. Tenofovir and emtricitabine did not alter triapine depletion. Triapine reduced CYP1A2 activity and increased CYP2C19 activity. CONCLUSION: CYP1A2 metabolism is the major metabolic pathway for triapine. Triapine may be evaluated in cancer patients in the setting of HIV with emtricitabine or tenofovir treatment. Confirmatory clinical trials may further define the in vivo triapine metabolic fate and quantify any drug-drug interactions.


Assuntos
Inibidores do Citocromo P-450 CYP1A2/farmacocinética , Indutores do Citocromo P-450 CYP2C19/farmacocinética , Neoplasias/terapia , Piridinas/farmacocinética , Radiossensibilizantes/farmacocinética , Tiossemicarbazonas/farmacocinética , Células Cultivadas , Quimiorradioterapia/métodos , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP1A2/metabolismo , Inibidores do Citocromo P-450 CYP1A2/uso terapêutico , Citocromo P-450 CYP2C19/metabolismo , Indutores do Citocromo P-450 CYP2C19/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Emtricitabina/farmacocinética , Hepatócitos , Humanos , Inativação Metabólica , Microssomos Hepáticos , Cultura Primária de Células , Piridinas/uso terapêutico , Radiossensibilizantes/uso terapêutico , Espectrometria de Massas em Tandem , Tenofovir/farmacocinética , Tiossemicarbazonas/uso terapêutico
15.
Biomolecules ; 10(9)2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961653

RESUMO

Thiosemicarbazones continue to attract the interest of researchers as potential anticancer drugs. For example, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, or triapine, is the most well-known representative of this class of compounds that has entered multiple phase I and II clinical trials. Two new triapine derivatives HL1 and HL2 were prepared by condensation reactions of 2-pyridinamidrazone and S-methylisothiosemicarbazidium chloride with 3-N-(tert-butyloxycarbonyl) amino-pyridine-2-carboxaldehyde, followed by a Boc-deprotection procedure. Subsequent reaction of HL1 and HL2 with CuCl2·2H2O in 1:1 molar ratio in methanol produced the complexes [CuII(HL1)Cl2]·H2O (1·H2O) and [CuII(HL2)Cl2] (2). The reaction of HL2 with Fe(NO3)3∙9H2O in 2:1 molar ratio in the presence of triethylamine afforded the complex [FeIII(L2)2]NO3∙0.75H2O (3∙0.75H2O), in which the isothiosemicarbazone acts as a tridentate monoanionic ligand. The crystal structures of HL1, HL2 and metal complexes 1 and 2 were determined by single crystal X-ray diffraction. The UV-Vis and EPR spectroelectrochemical measurements revealed that complexes 1 and 2 underwent irreversible reduction of Cu(II) with subsequent ligand release, while 3 showed an almost reversible electrochemical reduction in dimethyl sulfoxide (DMSO). Aqueous solution behaviour of HL1 and 1, as well as of HL2 and its complex 2, was monitored as well. Complexes 1-3 were tested against ovarian carcinoma cells, as well as noncancerous embryonic kidney cells, in comparison to respective free ligands, triapine and cisplatin. While the free ligands HL1 and HL2 were devoid of antiproliferative activity, their respective metal complexes showed remarkable antiproliferative activity in a micromolar concentration range. The activity was not related to the inhibition of ribonucleotide reductase (RNR) R2 protein, but rather to cancer cell homeostasis disturbance-leading to the disruption of cancer cell signalling.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Cobre/química , Piridinas/química , Tiossemicarbazonas/química , Aldeídos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Técnicas Eletroquímicas/métodos , Células HEK293 , Humanos , Estrutura Molecular , Piridinas/síntese química , Piridinas/farmacologia , Espectrofotometria/métodos , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/farmacologia
16.
J Inorg Biochem ; 190: 85-97, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384010

RESUMO

Triapine, the most prominent anticancer drug candidate from the substance class of thiosemicarbazones, was investigated in >30 clinical phase I and II studies. However, the results were rather disappointing against solid tumors, which can be explained (at least partially) due to inefficient delivery to the tumor site. Hence, we synthesized the first biotin-functionalized thiosemicarbazone derivatives in order to increase tumor specificity and accumulation. Additionally, for Triapine and one biotin conjugate the iron(III) and copper(II) complexes were prepared. Subsequently, the novel compounds were biologically evaluated on a cell line panel with different biotin uptake. The metal-free biotin-conjugated ligands showed comparable activity to the reference compound Triapine. However, astonishingly, the metal complexes of the biotinylated derivative showed strikingly decreased anticancer activity. To further analyze possible differences between the metal complexes, detailed physico- and electrochemical experiments were performed. However, neither lipophilicity or complex solution stability, nor the reduction potential or behavior in the presence of biologically relevant reducing agents showed strong variations between the biotinylated and non-biotinylated derivatives (only some differences in the reduction kinetics were observed). Nonetheless, the metal-free biotin-conjugate of Triapine revealed distinct activity in a colon cancer mouse model upon oral application comparable to Triapine. Therefore, this type of biotin-conjugated thiosemicarbazone is of interest for further synthetic strategies and biological studies.


Assuntos
Antineoplásicos/química , Biotina/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Ferro/química , Tiossemicarbazonas/química , Animais , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Humanos , Camundongos
17.
Front Oncol ; 9: 1067, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681600

RESUMO

Uterine cervix or vaginal cancers have inherent overactivity of ribonucleotide reductase (RNR), making these cancers rational targets for therapy based on interruption of cisplatin-radiotherapy-induced DNA damage repair. We conducted a pilot, open-label randomized phase II trial to evaluate the efficacy and safety of cisplatin-radiotherapy with or without triapine, a small molecule with RNR-inhibitory activity, in patients with advanced-stage uterine cervix or vaginal cancers (NCT01835171), as a lead in to a randomized phase III study (NCT02466971). A total of 26 women were randomly assigned to receive 6 weeks of daily radiotherapy followed by brachytherapy (80 Gy) and once-weekly cisplatin (40 mg m-2)-with or without three-times weekly intravenous triapine (25 mg m-2)-in one 56-days cycle. Primary end points were metabolic complete response by positron emission tomography and safety. Additional end points included the rate of clinical response, rate of methemoglobinemia, and progression-free survival. The addition of triapine to cisplatin-radiotherapy improved the rate of metabolic complete response from 69 to 92% (P = 0.32) and raised the 3-year progression-free survival estimate from 77 to 92% (hazard ratio for progression, 0.30; P = 0.27). The most frequent grade 3 or 4 adverse events in either treatment group included reversible leukopenia, neutropenia, fatigue, or electrolyte abnormalities. No significant differences were seen between the two groups in the rate of adverse events. Symptomatic methemoglobinemia was not encountered after triapine infusion. In conclusion, the addition of triapine to cisplatin-radiotherapy improved the rate of metabolic complete response in patients with advanced-stage uterine cervix or vaginal cancers without significant toxicity. A phase III trial adequately powered to evaluate progression-free and overall survival is underway (NCT02466971).

18.
Chinese Pharmacological Bulletin ; (12): 833-838, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013910

RESUMO

Aim To investigate the induction of ferroptosis of Triapine in non-small cell lung cancer cells A549, and its mechanism. Methods The effects of Triapine on the proliferation of A549 cells were assessed by MTT assay and colony formation assay; the effect of intracellular ROS levels of Triapine treated A549 cells was studied by DCFH-DA probe; the intracellular glutathione (GSH) and lipid peroxides (LPO) levels of A549 cells were detected by the kits after treating with Triapine; the effects of Triapine on the expression of glutathione peroxidase 4 (GPX4) in A549 cells were analyzed by Western blot; the changes of GPX4 level and cell viability were evaluated for the cells intervened with ROS inhibitor. Results Triapine could inhibit the proliferation of A549 cells, and the IC

19.
Front Oncol ; 8: 149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868473

RESUMO

Clinical ribonucleotide reductase (RNR) inhibitors have reinvigorated enthusiasm for radiochemotherapy treatment of patients with regionally advanced stage cervical cancers. About two-thirds of patients outlive their cervical cancer (1), even though up to half of their tumors retain residual microscopic disease (2). The National Cancer Institute Cancer Therapy Evaluation Program conducted two prospective trials of triapine-cisplatin-radiation to improve upon this finding by precisely targeting cervical cancer's overactive RNR. Triapine's potent inactivation of RNR arrests cells at the G1/S cell cycle restriction checkpoint and enhances cisplatin-radiation cytotoxicity. In this article, we provide perspective on challenges encountered in and future potential of clinical development of a triapine-cisplatin-radiation combination for patients with regionally advanced cervical cancer. New trial results and review presented here suggest that a triapine-cisplatin-radiation combination may offer molecular cell cycle target control to maximize damage in cancers and to minimize injury to normal cells. A randomized trial now accrues patients with regionally advanced stage cervical cancer to evaluate triapine's contribution to clinical benefit after cisplatin-radiation (clinicaltrials.gov, NCT02466971).

20.
J Pharm Biomed Anal ; 146: 154-160, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28881312

RESUMO

The ribonucleotide reductase inhibitor and radiosensitizer triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP), NSC 663249) is clinically being evaluated via the intravenous (IV) route for the treatment of cervical and vulvar cancer in combination with primary cisplatin chemoradiation. The need for a 2-h infusion and frequent administration of triapine is logistically challenging, prompting us to pursue oral (PO) administration. In support of the clinical trial investigating oral triapine in combination with chemoradiation, we developed and validated a novel LC-MS/MS assay for the quantification of triapine in 50µL human plasma. After protein precipitation, chromatographic separation of the supernatant was achieved with a Shodex ODP2 column and an isocratic acetonitrile-water mobile phase with 10% ammonium acetate. Detection with an ABI 4000 mass spectrometer utilized electrospray positive mode ionization. The assay was linear from 3 to 3,000ng/mL and proved to be accurate (97.1-103.1%) and precise (<7.4% CV), and met the U.S. FDA guidance for bioanalytical method validation. This LC-MS/MS assay will be an essential tool to further define the pharmacokinetics and oral bioavailability of triapine.


Assuntos
Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/química , Plasma/química , Piridinas/sangue , Piridinas/química , Ribonucleotídeo Redutases/antagonistas & inibidores , Tiossemicarbazonas/sangue , Tiossemicarbazonas/química , Bioensaio/métodos , Cromatografia Líquida/métodos , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa