RESUMO
Levels of the cellular dNTPs, the direct precursors for DNA synthesis, are important for DNA replication fidelity, cell cycle control, and resistance against viruses. Escherichia coli encodes a dGTPase (2'-deoxyguanosine-5'-triphosphate [dGTP] triphosphohydrolase [dGTPase]; dgt gene, Dgt) that establishes the normal dGTP level required for accurate DNA replication but also plays a role in protecting E. coli against bacteriophage T7 infection by limiting the dGTP required for viral DNA replication. T7 counteracts Dgt using an inhibitor, the gene 1.2 product (Gp1.2). This interaction is a useful model system for studying the ongoing evolutionary virus/host "arms race." We determined the structure of Gp1.2 by NMR spectroscopy and solved high-resolution cryo-electron microscopy structures of the Dgt-Gp1.2 complex also including either dGTP substrate or GTP coinhibitor bound in the active site. These structures reveal the mechanism by which Gp1.2 inhibits Dgt and indicate that Gp1.2 preferentially binds the GTP-bound form of Dgt. Biochemical assays reveal that the two inhibitors use different modes of inhibition and bind to Dgt in combination to yield enhanced inhibition. We thus propose an in vivo inhibition model wherein the Dgt-Gp1.2 complex equilibrates with GTP to fully inactivate Dgt, limiting dGTP hydrolysis and preserving the dGTP pool for viral DNA replication.
Assuntos
Bacteriófago T7 , Proteínas de Escherichia coli , Escherichia coli , GTP Fosfo-Hidrolases , Guanosina Trifosfato , Proteínas Virais , Bacteriófago T7/fisiologia , Microscopia Crioeletrônica , Replicação do DNA , DNA Viral/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Proteínas de Escherichia coli/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Conformação Proteica , Proteínas Virais/química , Replicação ViralRESUMO
dNTP triphosphohydrolase (TPH) belongs to the histidine/aspartate (HD) superfamily and catalyzes the hydrolysis of dNTPs into 2'-deoxyribonucleoside and inorganic triphosphate. TPHs are required for cellular dNTP homeostasis and DNA replication fidelity and are employed as a host defense mechanism. PA1124 from the pathogenic Pseudomonas aeruginosa bacterium functions as a dGTP and dTTP triphosphohydrolase. To reveal how PA1124 drives dNTP hydrolysis and is regulated, we performed a structural study of PA1124. PA1124 assembles into a hexameric architecture as a trimer of dimers. Each monomer has an interdomain dent where a metal ion is coordinated by conserved histidine and aspartate residues. A structure-based comparative analysis suggests that PA1124 accommodates the dNTP substrate into the interdomain dent near the metal ion. Interestingly, PA1124 interacts with ssDNA, presumably as an allosteric regulator, using a positively charged intersubunit cleft that is generated via dimerization. Furthermore, our phylogenetic analysis highlights similar or distinct oligomerization profiles across the TPH family.
Assuntos
Proteínas de Bactérias/química , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Domínio Catalítico , DNA Bacteriano/metabolismo , Polarização de Fluorescência , Modelos Moleculares , Ligação Proteica , Multimerização ProteicaRESUMO
Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson-Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally "opening" a tyrosine gate allowing enhanced substrate binding.
Assuntos
Nucleotídeos de Desoxiguanina/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/química , Sítio Alostérico , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Nucleotídeos de Desoxiguanina/química , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Modelos Moleculares , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Especificidade por SubstratoRESUMO
SAM and HD domain-containing protein 1 (SAMHD1) is a host factor that restricts reverse transcription of lentiviruses such as HIV in myeloid cells and resting T cells through its dNTP triphosphohydrolase (dNTPase) activity. Lentiviruses counteract this restriction by expressing the accessory protein Vpx or Vpr, which targets SAMHD1 for proteasomal degradation. SAMHD1 is conserved among mammals, and the feline and bovine SAMHD1 proteins (fSAM and bSAM) restrict lentiviruses by reducing cellular dNTP concentrations. However, the functional regions of fSAM and bSAM that are required for their biological functions are not well-characterized. Here, to establish alternative models to investigate SAMHD1 in vivo, we studied the restriction profile of fSAM and bSAM against different primate lentiviruses. We found that both fSAM and bSAM strongly restrict primate lentiviruses and that Vpx induces the proteasomal degradation of both fSAM and bSAM. Further investigation identified one and five amino acid sites in the C-terminal domain (CTD) of fSAM and bSAM, respectively, that are required for Vpx-mediated degradation. We also found that the CTD of bSAM is directly involved in mediating bSAM's antiviral activity by regulating dNTPase activity, whereas the CTD of fSAM is not. Our results suggest that the CTDs of fSAM and bSAM have important roles in their antiviral functions. These findings advance our understanding of the mechanism of fSAM- and bSAM-mediated viral restriction and might inform strategies for improving HIV animal models.
Assuntos
HIV/genética , Lentivirus/genética , Transcrição Reversa/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Gatos , Bovinos , Células HEK293 , HIV/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Lentivirus/patogenicidade , Células Mieloides/virologia , Domínios Proteicos/genética , Proteína 1 com Domínio SAM e Domínio HD/química , Linfócitos T/virologia , Replicação Viral/genéticaRESUMO
The sterile alpha motif and HD domain-containing protein 1 (SAMHD1), a dNTPase, prevents the infection of nondividing cells by retroviruses, including HIV, by depleting the cellular dNTP pool available for viral reverse transcription. SAMHD1 is a major regulator of cellular dNTP levels in mammalian cells. Mutations in SAMHD1 are associated with chronic lymphocytic leukemia (CLL) and the autoimmune condition Aicardi Goutières syndrome (AGS). The dNTPase activity of SAMHD1 can be regulated by dGTP, with which SAMHD1 assembles into catalytically active tetramers. Here we present extensive biochemical and structural data that reveal an exquisite activation mechanism of SAMHD1 via combined action of both GTP and dNTPs. We obtained 26 crystal structures of SAMHD1 in complex with different combinations of GTP and dNTP mixtures, which depict the full spectrum of GTP/dNTP binding at the eight allosteric and four catalytic sites of the SAMHD1 tetramer. Our data demonstrate how SAMHD1 is activated by binding of GTP or dGTP at allosteric site 1 and a dNTP of any type at allosteric site 2. Our enzymatic assays further reveal a robust regulatory mechanism of SAMHD1 activity, which bares resemblance to that of the ribonuclease reductase responsible for cellular dNTP production. These results establish a complete framework for a mechanistic understanding of the important functions of SAMHD1 in the regulation of cellular dNTP levels, as well as in HIV restriction and the pathogenesis of CLL and AGS.
Assuntos
Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Sítio Alostérico , Domínio Catalítico , Cristalografia por Raios X , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Cinética , Ligantes , Modelos Moleculares , Multimerização Proteica , Ribonucleotídeo Redutases/metabolismo , Proteína 1 com Domínio SAM e Domínio HD , Especificidade por SubstratoRESUMO
EF1143 from Enterococcus faecalis, a life-threatening pathogen that is resistant to common antibiotics, is a homo-tetrameric deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase), converting dNTPs into the deoxyribonucleosides and triphosphate. The dNTPase activity of EF1143 is regulated by canonical dNTPs, which simultaneously act as substrates and activity modulators. Previous crystal structures of apo-EF1143 and the protein bound to both dGTP and dATP suggested allosteric regulation of its enzymatic activity by dGTP binding at four identical allosteric sites. However, whether and how other canonical dNTPs regulate the enzyme activity was not defined. Here, we present the crystal structure of EF1143 in complex with dGTP and dTTP. The new structure reveals that the tetrameric EF1143 contains four additional secondary allosteric sites adjacent to the previously identified dGTP-binding primary regulatory sites. Structural and enzyme kinetic studies indicate that dGTP binding to the first allosteric site, with nanomolar affinity, is a prerequisite for substrate docking and hydrolysis. Then, the presence of a particular dNTP in the second site either enhances or inhibits the dNTPase activity of EF1143. Our results provide the first mechanistic insight into dNTP-mediated regulation of dNTPase activity.
Assuntos
Enterococcus faecalis/enzimologia , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Regulação Alostérica/fisiologia , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nucleosídeo-Trifosfatase/genética , Estrutura Terciária de Proteína , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Sterile alpha motif and HD domain 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase (dNTPase) that restricts the infection of a variety of RNA and DNA viruses, including herpesviruses. The anti-viral function of SAMHD1 is associated with its dNTPase activity, which is regulated by several post-translational modifications, including phosphorylation, acetylation and ubiquitination. Our recent studies also demonstrated that the E3 SUMO ligase PIAS1 functions as an Epstein-Barr virus (EBV) restriction factor. However, whether SAMHD1 is regulated by PIAS1 to restrict EBV replication remains unknown. RESULTS: In this study, we showed that PIAS1 interacts with SAMHD1 and promotes its SUMOylation. We identified three lysine residues (K469, K595 and K622) located on the surface of SAMHD1 as the major SUMOylation sites. We demonstrated that phosphorylated SAMHD1 can be SUMOylated by PIAS1 and SUMOylated SAMHD1 can also be phosphorylated by viral protein kinases. We showed that SUMOylation-deficient SAMHD1 loses its anti-EBV activity. Furthermore, we demonstrated that SAMHD1 is associated with EBV genome in a PIAS1-dependent manner. CONCLUSION: Our study reveals that PIAS1 synergizes with SAMHD1 to inhibit EBV lytic replication through protein-protein interaction and SUMOylation.
RESUMO
Sterile alpha motif and histidine/aspartic domain-containing protein 1 (SAMHD1) is a protein with anti-viral, anti-neoplastic, and anti-inflammatory properties. By degrading cellular dNTPs to constituent deoxynucleoside and free triphosphate, SAMHD1 limits viral DNA synthesis and prevents replication of HIV-1 and some DNA viruses such as HBV, vaccinia, and HSV-1. Recent findings suggest SAMHD1 is broadly active against retroviruses in addition to HIV-1, such as HIV-2, FIV, BIV, and EIAV. Interferons are cytokines produced by lymphocytes and other cells that induce a wide array of antiviral proteins, including some with activity again lentiviruses. Here we evaluated the role of IFNs on SAMHD1 gene expression, transcription, and post-translational modification in a feline CD4+ T cell line (FeTJ) and in primary feline CD4+ T lymphocytes. SAMHD1 mRNA in FetJ cells increased in a dose-related manner in response to IFNγ treatment concurrent with increased nuclear localization and phosphorylation. IFNα treatment induced SAMHD1 mRNA but did not significantly alter SAMHD1 protein detection, phosphorylation, or nuclear translocation. In purified primary feline CD4+ lymphocytes, IL2 supplementation increased SAMHD1 expression, but the addition of IFNγ did not further alter SAMHD1 protein expression or nuclear localization. Thus, the effect of IFNγ on SAMHD1 expression is cell-type dependent, with increased translocation to the nucleus and phosphorylation in FeTJ but not primary CD4+ lymphocytes. These findings imply that while SAMH1 is inducible by IFNγ, overall activity is cell type and compartment specific, which is likely relevant to the establishment of lentiviral reservoirs in quiescent lymphocyte populations.
Assuntos
Linfócitos T CD4-Positivos/virologia , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Proteína 1 com Domínio SAM e Domínio HD/efeitos dos fármacos , Animais , Antivirais/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Gatos , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Interleucina-2/metabolismo , Lentivirus/efeitos dos fármacos , Lentivirus/crescimento & desenvolvimento , Fosforilação/efeitos dos fármacos , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
SAMHD1 restricts lentiviruses by limiting availability of deoxynucleoside triphosphates for reverse transcription. HIV-2 and SIV have virion-associated proteins to counteract SAMHD1. Cats have an ortholog to human SAMHD1 and the FIV is restricted by human SAMHD1, but expression of feline SAMHD1 is unknown. Using a whole-body tissue microarray consisting of 24 tissues for immunohistochemistry, SAMHD1 expression was identified in a wide range of cat tissues. SAMHD1 was most strongly expressed in skin and mucosal epithelium, and in hemolymphatic and spermatogenic tissues. Both nuclear and cytoplasmic expression was detected. Feline cell lines susceptible to FIV infection also highly expressed SAMHD1. Preferential expression of SAMHD1 at sites of viral entry and replication supports a role for feline SAMHD1 in restricting FIV.