Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Anim Ecol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354751

RESUMO

Diversity and interspecific synchrony are among the main drivers behind the temporal stability of community abundance. Diversity can increase stability through the portfolio effect, while higher synchrony generally decreases stability. In turn, species interactions and similar responses to environmental variation are considered the main factors underlying the strength of interspecific synchrony, despite the challenges in determining their relative roles. The analysis of the relationship between interspecific synchrony and the trait (or phylogenetic) distance between species can increase the robustness of inferences about these factors. Here, we used pairwise interspecific and community-wide analyses to investigate, respectively, the drivers of interspecific synchrony and the influence of trait and phylogenetic diversity on the stability of fish communities. For that, we used 18 years of fish abundance data from the Upper Paraná River floodplain. At the interspecific level, we used quantile regressions to test within-guild relationships between interspecific synchrony and trait and phylogenetic distance between species. At the community level, we tested the relationships between community-wide synchrony, stability, and (trait and phylogenetic) diversity. We found that interspecific synchrony decreased with trait and phylogenetic distances. In the community-level analysis, we found that more synchronous fish communities were less stable, but the relationship between diversity and stability was in general weak. At the interspecific level, our study highlights the role of similar responses to environmental variation in driving species' temporal dynamics. At the community level, the strength of the relationships between trait or phylogenetic diversity and community stability depended on the feeding guild. On the other hand, we found strong relationships between synchrony and stability. These results suggest that increased synchrony levels in response to regional environmental changes could decrease the stability of fish communities in this floodplain.

2.
Ecotoxicology ; 33(4-5): 472-483, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363482

RESUMO

Artisanal and Small-Scale Gold Mining (ASGM) represents a significant source of anthropogenic mercury emissions to the environment, with potentially severe implications for avian biodiversity. In the Madre de Dios department of the southern Peruvian Amazon, ASGM activities have created landscapes marred by deforestation and post-mining water bodies (mining ponds) with notable methylation potential. While data on Hg contamination in terrestrial wildlife remains limited, this study measures Hg exposure in several terrestrial bird species as bioindicators. Total Hg (THg) levels in feathers from birds near water bodies, including mining ponds associated with ASGM areas and oxbow lakes, were analyzed. Our results showed significantly higher Hg concentrations in birds from ASGM sites with mean ± SD of 3.14 ± 7.97 µg/g (range: 0.27 to 72.75 µg/g, n = 312) compared to control sites with a mean of 0.47 ± 0.42 µg/g (range: 0.04 to 1.89 µg/g, n = 52). Factors such as trophic guilds, ASGM presence, and water body area significantly influenced feather Hg concentrations. Notably, piscivorous birds exhibited the highest Hg concentration (31.03 ± 25.25 µg/g, n = 12) exceeding known concentrations that affect reproductive success, where one measurement of Chloroceryle americana (Green kingfisher; 72.7 µg/g) is among the highest ever reported in South America. This research quantifies Hg exposure in avian communities in Amazonian regions affected by ASGM, highlighting potential risks to regional bird populations.


Assuntos
Aves , Monitoramento Ambiental , Ouro , Mercúrio , Mineração , Animais , Mercúrio/análise , Peru , Plumas/química , Poluentes Químicos da Água/análise , Poluentes Ambientais/análise , Exposição Ambiental
3.
Ecol Appl ; 33(8): e2921, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776039

RESUMO

Averting climate change-induced forest diebacks increasingly relies on tree species planted outside of their natural range and on the addition of non-native tree species to mixed-species forests. However, the consequences of such changes for associated biodiversity remain poorly understood, especially for the forest canopy as a largely understudied forest stratum. Here, we used flight interception traps and a metabarcoding approach to study the taxonomic and functional (trophic guilds) composition and taxon richness of canopy arthropods. We sampled 15 monospecific and mixed stands of native European beech, native Norway spruce-planted outside its natural range-and non-native Douglas fir in northwest Germany. We found that the diversity of arthropods was lower in non-native Douglas fir compared with native beech stands. Taxon richness of herbivores was reduced by both conifer species. Other functional guilds, however, were not affected by stand type. Arthropod composition differed strongly between native broadleaved beech and monospecific coniferous (native spruce or non-native Douglas fir) stands, with less pronounced differences between the native and non-native conifers. Beech-conifer mixtures consistently hosted intermediate arthropod diversity and community composition compared with the respective monospecific stands. Moreover, arthropod diversity had a positive relationship with the number of canopy microhabitats. Our study shows that considering arthropod taxa of multiple functional groups reveals the multifaceted impact of non-native tree species on forest canopy arthropod communities. Contrasting with previous studies that primarily focused on the forest floor, we found that native beech hosts a rich diversity of arthropods, compared with lower diversity and distinct communities in economically attractive, and especially in non-native, conifers with few canopy microhabitats. Broadleaf-conifer mixtures did not perform better than native beech stands, but mitigated the negative effects of conifers, making such mixtures a compromise to foster both forest-associated diversity and economic yield.


Assuntos
Artrópodes , Fagus , Picea , Pseudotsuga , Traqueófitas , Animais , Biodiversidade , Alemanha , Herbivoria
4.
Oecologia ; 202(1): 113-127, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37148379

RESUMO

Birds are excellent vectors of allochthonous matter and energy due to their high mobility, with more intense flow when waterbirds congregate in breeding colonies, feeding in surrounding aquatic and terrestrial areas, and promoting nutritional pulses to nutrient-poor environments. In southern Brazil, a swamp forest on an estuarine island is used by waterbirds for breeding, providing an opportunity to investigate the potential effects of transport of matter between nutrient-rich environments. Soil, plants, invertebrates, and blood from terrestrial birds were collected and stable isotopes compared to similar organisms in a control site without heronries. Values of δ15N and δ13C from waterbirds were higher in the colony in comparison to the control site (spatial effect). The enrichment of 15N and 13C provided during the active colony period persisted after the breeding period, especially for δ15N, which was higher in all compartments (temporal effect). Moreover, the enrichment of 15N occurred along the entire trophic chain (vertical effect) in the colony environment, including different guilds of invertebrates and land birds. The enrichment in 13C seems to lose strength and was mostly explained by factors such as trophic guild rather than site, especially in birds. Bayesian mixture models with terrestrial vs. estuarine endpoints demonstrated that all organisms from both colony and control environments had assimilated estuarine matter. Finally, detritivorous invertebrates showed greater assimilation when compared to other guilds. This study demonstrates that adjacent nutrient-rich environments, such as palustrine forests and estuaries, are nutritionally enriched in several dimensions from nearby autochthonous subsidies that are maintained throughout the year.


Assuntos
Cadeia Alimentar , Áreas Alagadas , Animais , Teorema de Bayes , Melhoramento Vegetal , Florestas , Invertebrados , Aves , Isótopos de Nitrogênio/análise
5.
J Anim Ecol ; 88(12): 1845-1859, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31111468

RESUMO

Many ecosystem functions depend on the structure of food webs, which heavily relies on the body size spectrum of the community. Despite that, little is known on how the size spectrum of soil animals responds to agricultural practices in tropical land-use systems and how these responses affect ecosystem functioning. We studied land-use-induced changes in below-ground communities in tropical lowland ecosystems in Sumatra (Jambi province, Indonesia), a hot spot of tropical rainforest conversion into rubber and oil palm plantations. The study included ca. 30,000 measured individuals from 33 high-order taxa of meso- and macrofauna spanning eight orders of magnitude in body mass. Using individual body masses, we calculated the metabolism of trophic guilds and used food web models to calculate energy fluxes and infer ecosystem functions, such as decomposition, herbivory, primary and intraguild predation. Land-use change was associated with reduced abundance and taxonomic diversity of soil invertebrates, but strong increase in total biomass and moderate changes in total energy flux. These changes were due to increased biomass of large-sized decomposers in soil, in particular earthworms, with their share in community metabolism increasing from 11% in rainforest to 59%-76% in jungle rubber, and rubber and oil palm plantations. Decomposition, that is the energy flux to decomposers, stayed unchanged, but herbivory, primary and intraguild predation decreased by an order of magnitude in plantation systems. Intraguild predation was very important, being responsible for 38% of the energy flux in rainforest according to our model. Conversion of rainforest into monoculture plantations is associated by an uneven loss of size classes and trophic levels of soil invertebrates resulting in sequestration of energy in large-sized primary consumers and restricted flux of energy to higher trophic levels. Pronounced differences between rainforest and jungle rubber reflect sensitivity of rainforest soil animal communities to moderate land-use changes. Soil communities in plantation systems sustained high total energy flux despite reduced biodiversity. The high energy flux into large decomposers but low energy fluxes into other trophic guilds suggests that trophic multifunctionality of below-ground communities is compromised in plantation systems.


Assuntos
Cadeia Alimentar , Solo , Animais , Biodiversidade , Ecossistema , Indonésia , Floresta Úmida
6.
J Fish Biol ; 95(2): 527-539, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30989661

RESUMO

The contents of 1056 stomachs were included in a trophic-guild analysis to document separation amongst 16 groundfish species inhabiting Pacific herring Clupea pallasii and walleye pollock Gadus chalcogrammus nursery fjords in Prince William Sound, Alaska and to determine the relative contribution of C. pallasii and G. chalcogrammus to that separation. A total of five multi-species feeding guilds and one outlier species were determined through multivariate analyses. Major gradients of trophic separation spanned from invertebrates (mostly shrimps, crabs and unidentified decapods) to fishes (mostly unidentified fishes, C. pallasii and G. chalcogrammus) a pattern that was influenced by intra and interspecific differences in predator lengths. While C. pallasii and G. chalcogrammus were important to the overall guild structure, within-guild similarities were consistently highest due to unidentified fishes. In general, larger predators consumed the largest C. pallasii and G. chalcogrammus, with the smaller-on-average predators consuming smaller C. pallasii and fewer or smaller G. chalcogrammus. Regardless of guild inclusion, groundfishes primarily consumed pre-recruit C. pallasii and G. chalcogrammus (i.e., younger than age 3 years fishes), which has the potential to negatively influence recruitment of these forage fishes to the adult, spawning population.


Assuntos
Comportamento Alimentar , Peixes/fisiologia , Cadeia Alimentar , Gadiformes/fisiologia , Alaska , Animais , Estuários , Estações do Ano
7.
J Anim Ecol ; 85(1): 199-212, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26439671

RESUMO

Understanding interspecific interactions, and the influences of anthropogenic disturbance and environmental change on communities, are key challenges in ecology. Despite the pressing need to understand these fundamental drivers of community structure and dynamics, only 17% of ecological studies conducted over the past three decades have been at the community level. Here, we assess the trophic structure of the procellariiform community breeding at South Georgia, to identify the factors that determine foraging niches and possible temporal changes. We collected conventional diet data from 13 sympatric species between 1974 and 2002, and quantified intra- and inter-guild, and annual variation in diet between and within foraging habits. In addition, we tested the reliability of stable isotope analysis (SIA) of seabird feathers collected over a 13-year period, in relation to those of their potential prey, as a tool to assess community structure when diets are diverse and there is high spatial heterogeneity in environmental baselines. Our results using conventional diet data identified a four-guild community structure, distinguishing species that mainly feed on crustaceans; large fish and squid; a mixture of crustaceans, small fish and squid; or carrion. In total, Antarctic krill Euphausia superba represented 32%, and 14 other species a further 46% of the combined diet of all 13 predators, underlining the reliance of this community on relatively few types of prey. Annual variation in trophic segregation depended on relative prey availability; however, our data did not provide evidence of changes in guild structure associated with a suggested decline in Antarctic krill abundance over the past 40 years. Reflecting the differences in δ(15) N of potential prey (crustaceans vs. squid vs. fish and carrion), analysis of δ(15) N in chick feathers identified a three-guild community structure that was constant over a 13-year period, but lacked the trophic cluster representing giant petrels which was identified using conventional diet data. Our study is the first in recent decades to examine dietary changes in seabird communities over time. Conventional dietary analysis provided better resolution of community structure than SIA. However, δ(15) N in chick feathers, which reflected trophic (level) specialization, was nevertheless an effective and less time-consuming means of monitoring temporal changes.


Assuntos
Biodiversidade , Aves/fisiologia , Cadeia Alimentar , Animais , Regiões Antárticas , Organismos Aquáticos/fisiologia , Ilhas Atlânticas , Dieta , Ecologia
8.
J Fish Biol ; 89(1): 680-95, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26693658

RESUMO

A comparison of three tidal creeks assessed the effects of the hydrological regime on trophic organization in juvenile fish assemblages of 21 species in a tropical estuary in north-eastern Brazil. There were seven trophic guilds represented spatially. Zooplanktivore and zoobenthivore guilds dominated the lower estuary, whereas omnivores and detritivores dominated the upper estuary. In the rainy season, the zooplanktivore and omnivore guilds were more common throughout the estuary, but in the dry season, zoobenthivores and piscivores occurred throughout. The trophic organization results show that (1) there was a higher complexity in tidal creeks in the upper estuary compared with the first tidal creek in the lower region and (2) trophic linkages increased in the upper estuary, principally the number of omnivore and detritivore species. Spatial variation in trophic structure was primarily associated with differences in the location of the tidal creeks along the estuary, and this variability was partly attributed to fish species richness; the number of species increased towards the upper estuary, and additional species occupied different trophic levels or used additional resources.


Assuntos
Estuários , Peixes , Cadeia Alimentar , Animais , Brasil , Chuva , Rios , Estações do Ano , Clima Tropical
9.
J Fish Biol ; 89(1): 921-38, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26864873

RESUMO

This study tested whether some attributes of the diversity, communities and populations of surf-zone fish assemblages varied with different hydrodynamic and anthropogenic influences at four Guanabara Bay sandy beaches: Dentro (sheltered with limited human access), Fora (exposed with limited human access), Urca (sheltered with unlimited human access) and Vermelha (exposed with unlimited human access), between autumn 2011 and summer 2012. Twenty-nine species and 1613 individuals were recorded from 76 trawls. The 10 most abundant species accounted for 94·5% of the total number, but only four species (Diplodus argenteus, Harengula clupeola, Sardinella brasiliensis and Sphoeroides greeleyi) were recorded at all four beaches, revealing a high level of species substitution. Fish assemblages differed not only for diversity attributes, but also at community and population levels, with lower values of the Shannon-Wiener index, richness and total fish abundance and biomass at Vermelha beach, and higher densities of Trachinotus carolinus, Atherinella brasiliensis and S. greeleyi related to beaches with high anthropogenic influence. The findings reveal that fish assemblages of Dentro, Fora, Urca and Vermelha beaches differed not only in response to hydrodynamic influences, but also due to the effects of different degrees of human interference (i.e. presence of solid residues, population density and fishing impacts), emphasizing the importance of the sheltered and less anthropogenically affected beaches, as spawning, nursery and growth areas.


Assuntos
Ecossistema , Peixes , Hidrodinâmica , Animais , Baías , Brasil , Estuários , Humanos , Densidade Demográfica , Estações do Ano
10.
Ecol Evol ; 14(7): e11711, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39026953

RESUMO

Muling River, situated amidst cultivated lands in Heilongjiang Province, northeastern China, has long been subjected to sand-digging activities, resulting in severe damage to its riverbed. However, little research has been conducted on the impact of this disturbance on the status of fish community structure and trophic guilds in this river. In this study, environmental factors, fish community structure, and fish trophic guild biomass distribution patterns from the Muling River basin were investigated among seasons (spring, summer, and autumn) and sections (upper, middle, and lower stream) in 2015 and 2017. During the six sampling times periods, 46 species of five orders and 12 families of fish were classified into seven trophic guilds. Fish species number and biomass were higher upper reaches of the watershed. The insectivores (16.26%), phytoplanktivores (10.09%), benthivores (40.17%), and omnivores (11.86%) were the dominant trophic guilds. We found that fish trophic guilds biomass and environmental factors such as transparency, water depth, pH value, total phosphorus, and chemical oxygen demand were highest in the upper section compared to other sections. Variation partitioning revealed that fish trophic guilds biomass was influenced more by environmental factors (61.2%), followed by section (0.7%) and season (0.1%). Partial RDA ordination showed that fish trophic guilds were positively correlated with water depth and transparency, while negative with turbidity. This study underscores the importance of considering trophic guilds of freshwater fishes to inform management strategies in regions experiencing significant environmental change.

11.
Environ Sci Pollut Res Int ; 30(12): 33543-33554, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36480140

RESUMO

The isotopic signatures of carbon in primary consumer fish species in the Madeira River basin (Western Amazon) follow a pattern, with basal species feeding mainly on C3 (e.g., vascular plants and phytoplankton). In this study with 196 specimens of 19 fish species and six trophic guilds, significant differences were found between the two main groups of primary consumers (herbivores and detritivores) in the Madeira River basin. The mercury and δ15N data indicated that the fish specimens collected in Puruzinho and Cuniã Lakes provided greater trophic magnification factors (TMFs) for this metal than those found in the corresponding rivers. In relation to total mercury (0.09-2.07 µg g-1) and methylmercury (0.05-1.91 µg g-1) concentrations, the piscivorous/carnivorous species exceeded the values recommended by the World Health Organization, with a [MeHg:THg] ratio of about 80%. Preventive and educational practices should be adopted to reduce the possible toxic effects of Hg in the riverside population, for whom fish constitutes the main protein source. Also, biomonitoring of the fish species in the Madeira River should be conducted on an ongoing basis to detect possible alterations in mercury concentrations.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Compostos de Metilmercúrio/metabolismo , Mercúrio/análise , Rios , Carbono/metabolismo , Nitrogênio/metabolismo , Brasil , Bioacumulação , Cadeia Alimentar , Poluentes Químicos da Água/análise , Isótopos , Peixes/metabolismo , Monitoramento Ambiental
12.
PeerJ ; 11: e15712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456898

RESUMO

Coleopterans are the most diverse animal group on Earth and constitute good indicators of environmental change. However, little information is available about Coleopteran communities' responses to disturbance and land-use change. Tropical dry forests have undergone especially extensive anthropogenic impacts in the past decades. This has led to mosaic landscapes consisting of areas of primary forest surrounded by pastures, agricultural fields and secondary forests, which negatively impacts many taxonomic groups. However, such impacts have not been assessed for most arthropod groups. In this work, we compared the abundance, richness and diversity of Coleopteran morphospecies in four different successional stages in a tropical dry forest in western Mexico, to answer the question: How do Coleopteran assemblages associate with vegetation change over the course of forest succession? In addition, we assessed the family composition and trophic guilds for the four successional stages. We found 971 Coleopterans belonging to 107 morphospecies distributed in 28 families. Coleopteran abundance and richness were greatest for pastures than for latter successional stages, and the most abundant family was Chrysomelidae, with 29% of the individuals. Herbivores were the most abundant guild, accounting for 57% of the individuals, followed by predators (22%) and saprophages (21%) beetles. Given the high diversity and richness found throughout the successional chronosequence of the studied tropical dry forest, in order to have the maximum number of species associated with tropical dry forests, large tracts of forest should be preserved so that successional dynamics are able to occur naturally.


Assuntos
Artrópodes , Besouros , Animais , Ecossistema , Biodiversidade , México , Florestas
13.
Neotrop Entomol ; 51(4): 499-513, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35575877

RESUMO

Insect life cycles are short-term and therefore sensitive to immediate changes triggered by climate, vegetation structure, or land use management; hence, the insect populations shape the communities and functional relationships in tropical forests. In this study, we hypothesized that seasonal variations of the dipteran families respond in different ways to changes of weather conditions, thereby affecting their population dynamics. In a one-hectare plot, we surveyed the fly community inhabiting the understory of a Neotropical rainforest. Over a yearly cycle, we used three Malaise traps operated continuously for 365 days and recorded a total of 68,465 fly specimens belonging to 48 families of Diptera, 15 of which were most abundant, accounting for 99.2% of all sampled individuals. The results of the trapping frequency indices (TFIs) exhibited significant population fluctuations in 12 of the 15 most abundant families, which were particularly correlated with temperature or precipitation. Based on such variations, we identified four seasonal patterns as follows: (i) Spring-Autumn bimodal pattern (Cecidomyiidae, Sciaridae, Phoridae, Stratiomyidae); (ii) Spring pattern (Mycetophilidae, Dolichopodidae, Ceratopogonidae); (iii) Autumn pattern (Chironomidae, Psychodidae); (iv) Winter pattern (Empididae, Tipulidae, Ditomyiidae). From a functional perspective, we found the prevalence of families with saprophagous larvae, in addition to phytophagous, fungivores, and predacious. Our results suggest a key role played by the Diptera community on structuring the functional clusters, both in terms of taxonomic composition and on seasonal shifts of abundance, thus influencing the dynamic processes of nutrient cycling in the understory.


Assuntos
Dípteros , Psychodidae , América , Animais , Clima , Floresta Úmida , Estações do Ano
14.
PeerJ ; 10: e14374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530392

RESUMO

Several forest types compose the apparently homogenous forest landscape of the lowland Amazon. The seasonally flooded forests (igapós) of the narrow floodplains of the blackwater rivers of the Amazon basin support their community of animals; however, these animals are required to adapt to survive in this environment. Furthermore, several taxa are an important source of seasonal resources for the animals in the adjacent unflooded forest (terra firme). During the low-water phase, the igapó becomes available to terrestrial species that make use of terra firme and igapó forests. Nonetheless, these lateral movements of terrestrial mammals between hydrologically distinct forest types remain poorly understood. This study tested the hypothesis that the attributes of the assemblages (abundance, richness, evenness, and functional groups) of the terrestrial mammals in both these forest types of the Cuieiras River basin, which is located in the Central Amazon, are distinct and arise from the ecological heterogeneity induced by seasonal floods. After a sampling effort of 10,743 camera trap days over four campaigns, two for the terra firme (6,013 trap days) and two for the igapó forests (4,730 trap days), a total of 31 mammal species (five were considered eventual) were recorded in both forest types. The species richness was similar in the igapó and terra firme forests, and the species abundance and biomass were greater in the terra firme forest, which were probably due to its higher primary productivity; whereas the evenness was increased in the igapós when compared to the terra firme forest. Although both forest types shared 84% of the species, generally a marked difference was observed in the composition of the terrestrial mammal species. These differences were associated with abundances of some specific functional groups, i.e., frugivores/granivores. Within-group variation was explained by balanced variation in abundance and turnover, which the individuals of a given species at one site were substituted by an equivalent number of individuals of a different species at another site. However, the occupancy was similar between both forest types for some groups such as carnivores. These findings indicate that seasonal flooding is a relevant factor in structuring the composition of terrestrial mammal assemblages between terra firme and floodplain forests, even in nutrient-poor habitats such as igapós. The results also highlight the importance of maintaining the mosaic of natural habitats on the scale of the entire landscape, with major drainage basins representing management units that provide sufficiently large areas to support a range of ecological processes (e.g., nutrient transport, lateral movements and the persistence of apex predators).


Assuntos
Inundações , Árvores , Animais , Florestas , Ecossistema , Mamíferos
15.
Environ Sci Pollut Res Int ; 29(10): 14791-14805, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34622404

RESUMO

The analysis of metal concentrations in bird feathers and genotoxicity tests are tools used to evaluate anthropogenic impacts on ecosystems. We investigated the response of birds, used as bioindicators, to disturbances observed in three areas with distinctive environmental characteristics (natural, agricultural, and urban) in southern Brazil. For this purpose, we quantified metals (Mn, Cu, Cr, and Zn) in feathers and determined the number of micronuclei (MN) and other nuclear abnormalities (NA) in 108 birds from 25 species and 17 families captured in the study area. No significant differences was found in the metal concentrations and the number of MN and NA between the sampling areas. Zn and Cu concentrations were significantly higher in insectivorous than those in omnivorous birds. The Zn concentration was significantly different between some species, and the Cu concentration was significantly higher in juveniles than that in adults. The best generalized linear models showed that omnivorous birds had more MN and NA and that juveniles and birds with better body condition index had increased NA numbers. This study demonstrates that the analyzed variables contribute in different ways to the result of each biomarker, mainly due to particular ecological and physiological characteristics of each species. We conclude that wild birds have the potential to be used as environmental bioindicators in the study area, but future studies should focus on one or a few species whose ecological and physiological habits are well known.


Assuntos
Poluentes Ambientais , Metais Pesados , Animais , Aves , Brasil , Ecossistema , Biomarcadores Ambientais , Monitoramento Ambiental , Poluentes Ambientais/análise , Plumas/química , Humanos , Metais Pesados/análise
16.
Biol Rev Camb Philos Soc ; 97(4): 1691-1711, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393748

RESUMO

The belowground compartment of terrestrial ecosystems drives nutrient cycling, the decomposition and stabilisation of organic matter, and supports aboveground life. Belowground consumers create complex food webs that regulate functioning, ensure stability and support biodiversity both below and above ground. However, existing soil food-web reconstructions do not match recently accumulated empirical evidence and there is no comprehensive reproducible approach that accounts for the complex resource, size and spatial structure of food webs in soil. Here I build on generic food-web organisation principles and use multifunctional classification of soil protists, invertebrates and vertebrates, to reconstruct a 'multichannel' food web across size classes of soil-associated consumers. I infer weighted trophic interactions among trophic guilds using feeding preferences and prey protection traits (evolutionarily inherited traits), size and spatial distributions (niche overlaps), and biomass-dependent feeding. I then use food-web reconstruction, together with assimilation efficiencies, to calculate energy fluxes assuming a steady-state energetic system. Based on energy fluxes, I propose a number of indicators, related to stability, biodiversity and multiple ecosystem-level functions such as herbivory, top-down control, translocation and transformation of organic matter. I illustrate this approach with an empirical example, comparing it with traditional resource-focused soil food-web reconstruction. The multichannel reconstruction can be used to assess 'trophic multifunctionality' (analogous to ecosystem multifunctionality), i.e. simultaneous support of multiple trophic functions by the food web, and compare it across communities and ecosystems spanning beyond the soil. With further empirical validation of the proposed functional indicators, this multichannel reconstruction approach could provide an effective tool for understanding animal diversity-ecosystem functioning relationships in soil. This tool hopefully will inspire more researchers to describe soil communities and belowground-aboveground interactions comprehensively. Such studies will provide informative indicators for including consumers as active agents in biogeochemical models, not only locally but also on regional and global scales.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biodiversidade , Invertebrados , Solo
17.
Biol Rev Camb Philos Soc ; 97(3): 1057-1117, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35060265

RESUMO

Soil organisms drive major ecosystem functions by mineralising carbon and releasing nutrients during decomposition processes, which supports plant growth, aboveground biodiversity and, ultimately, human nutrition. Soil ecologists often operate with functional groups to infer the effects of individual taxa on ecosystem functions and services. Simultaneous assessment of the functional roles of multiple taxa is possible using food-web reconstructions, but our knowledge of the feeding habits of many taxa is insufficient and often based on limited evidence. Over the last two decades, molecular, biochemical and isotopic tools have improved our understanding of the feeding habits of various soil organisms, yet this knowledge is still to be synthesised into a common functional framework. Here, we provide a comprehensive review of the feeding habits of consumers in soil, including protists, micro-, meso- and macrofauna (invertebrates), and soil-associated vertebrates. We have integrated existing functional group classifications with findings gained with novel methods and compiled an overarching classification across taxa focusing on key universal traits such as food resource preferences, body masses, microhabitat specialisation, protection and hunting mechanisms. Our summary highlights various strands of evidence that many functional groups commonly used in soil ecology and food-web models are feeding on multiple types of food resources. In many cases, omnivory is observed down to the species level of taxonomic resolution, challenging realism of traditional soil food-web models based on distinct resource-based energy channels. Novel methods, such as stable isotope, fatty acid and DNA gut content analyses, have revealed previously hidden facets of trophic relationships of soil consumers, such as food assimilation, multichannel feeding across trophic levels, hidden trophic niche differentiation and the importance of alternative food/prey, as well as energy transfers across ecosystem compartments. Wider adoption of such tools and the development of open interoperable platforms that assemble morphological, ecological and trophic data as traits of soil taxa will enable the refinement and expansion of the multifunctional classification of consumers in soil. The compiled multifunctional classification of soil-associated consumers will serve as a reference for ecologists working with biodiversity changes and biodiversity-ecosystem functioning relationships, making soil food-web research more accessible and reproducible.


Assuntos
Ecossistema , Solo , Animais , Cadeia Alimentar , Hábitos , Humanos , Vertebrados
18.
Neotrop Entomol ; 50(4): 551-561, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33852131

RESUMO

Although commercial forest plantations have experienced a major growth in the tropics over the past decades, little attention has been paid to their role in the conservation of epigeal arthropod communities. We studied diversity patterns of the epigeal beetle community in monoculture and polyculture forest plantations with big-leaf mahogany (Swietenia macrophylla). Likewise, we explored the existence of indicator species of each plantation type. Our findings highlight that each plantation type promotes multiple impacts on diversity patterns. We found that monocultures positively influenced overall beetle species richness and ecological diversity. When broken down by guild, both predator and decomposer species richness were similar between monoculture and polyculture, whereas for beetle diversity we found contrasting responses by guild: decomposer diversity was greater in monoculture whereas predator diversity was higher in polyculture. In addition, species composition differed between monoculture and polyculture, except for the predator guild. Species turnover was the main component explaining beta diversity patterns at all levels, indicating that each plantation type promotes biologically distinct epigeal assemblages. Few superabundant heliophile species dominated the beetle community structure; moreover, monocultures had a composition skewed towards heliophile species whereas polyculture favored umbrophile species. These patterns could be attributed to differences in habitat complexity between plot types, namely differences in tree cover. Additionally, indicator species only were identified in polycultures, reflecting their higher spatial complexity. Monoculture and polyculture plantations with big-leaf mahogany are complementary agroecosystems for preserving diverse epigeal beetle communities and should be considered valuable tools for conservation purposes in the tropics.


Assuntos
Biodiversidade , Besouros , Agricultura Florestal , Animais , Besouros/classificação , Florestas , Árvores
19.
Sci Total Environ ; 750: 141667, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871370

RESUMO

Stable isotopes are increasingly used to detect and understand the impacts of environmental changes on riverine ecological properties. The δ13C and δ15N signatures of fish with different feeding habits were measured in a large subtropical river to evaluate how fish isotopic niches respond to environmental gradients and human disturbance. From basal resources to fish consumers, the high values of epilithic periphyton (biofilm) δ13C and suspended particulate organic matter δ15N concurrently determined the niche ranges and space (e.g., convex hull area) of fish communities. Along a longitudinal gradient (except in the industrial zone), the number of fish trophic guilds identified by Bayesian ellipses continuously increased; meanwhile, higher trophic diversity and less redundancy were observed near the lower reaches and estuary. Variance inflation factors were estimated to detect the multicollinearity of 40 environmental variables, 14 of which were selected as indicators. Relative importance (RI) analysis was used to evaluate the explanatory power of these indicators for the spatial variation in isotopic niche metrics; the results showed that riffle habitat area, water nitrate concentration, gravel-cobble substrate, and riparian buffer width were the 4 key environmental indicators (average RI > 12%) that determined the longitudinal pattern of fish isotopic niches. These findings suggested that community-level δ13C signatures are more responsive to changes in habitats (e.g., riffle) and substrates (e.g., gravel-cobble) supporting the productivity of autochthonous diatoms while δ15N signatures respond to water quality altered by nitrogen pollution from manure-fertilized farming and poultry livestock effluent. Furthermore, δ15N may be more robust and interpretable than δ13C as an isotopic indicator of ecosystem change in rivers exposed to multiple or complex anthropogenic stressors.


Assuntos
Ecossistema , Rios , Animais , Teorema de Bayes , Isótopos de Carbono/análise , China , Indicadores Ambientais , Monitoramento Ambiental , Humanos , Isótopos de Nitrogênio/análise
20.
Environ Sci Pollut Res Int ; 28(1): 365-378, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32808132

RESUMO

This study assessed the concentration, bioconcentration, and bioaccumulation of As, Cd, Co, Cr, Cu, Mg, Mn, Ni, Pb, and Zn in juvenile fishes (Acestrorynchus pantaneiro, Brycon orbygnianus, Cyphocharax voga, Megaleporinus obtusidens, Odontesthes bonariensis, Pimelodus maculatus, Prochilodus lineatus, Salminus brasiliensis, and Schizodon borelli) in the Lower Paraná River (Argentina), the most extensive floodplain from the Plata Basin. The floodplain is crucial for the reproduction and growth of various species such as P. lineatus, M. obtusidens, and S. brasiliensis, which complete their life cycle in this environment. In total, 90 individuals were sampled for nitrogen stable isotope, and trace element analysis in muscle tissue, water, and sediment was analyzed. The results show that all the studied species bioaccumulate Cr, Mg, Ni, and Zn. In particular, B. orbygnianus and P. maculatus presented the highest bioaccumulation factor for Cr. A biodilution of Co through the food chain was observed. No positive correlation was found between element concentration and trophic level, but we observed significant differences between trophic guilds (herbivorous, omnivorous, and carnivorous). Our findings suggest that feeding habits determine trace element concentrations. To establish differential behavior between different species within the aquatic web further studies are necessary, particularly in the floodplain of the Paraná, which is a crucial nursery area for most commercially important fishes from the Plata Basin. Graphical abstract.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Animais , Argentina , Bioacumulação , Ecossistema , Monitoramento Ambiental , Peixes , Humanos , Metais Pesados/análise , Rios , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa