RESUMO
Cilia are microtubule (MT)-based organelles present on the surface of nearly all vertebrate cells. MTs are polymers of α- and ß-tubulins that are each encoded by multiple, individual isotype genes. Tubulin isotype composition is thought to influence MT behaviors. Ciliary MTs differ from other MTs in the cell in terms of organization, stability and post-translational modifications. However, little is known about the tubulin isotypes that build ciliary MTs and the functional requirements for tubulin isotypes in cilia have not been examined in vertebrates. Here, we have tested the role of the ß-tubulin isotype genes in the mouse that harbor a conserved amino acid motif associated with ciliated organisms. We found that Tubb4b localizes to cilia in multi-ciliated cells (MCCs) specifically. In respiratory and oviduct MCCs, Tubb4b is asymmetrically localized within multi-cilia, indicating that the tubulin isotype composition changes along the length of the ciliary axonemal MTs. Deletion of Tubb4b resulted in striking structural defects within the axonemes of multi-cilia, without affecting primary cilia. These studies show that Tubb4b is essential for the formation of a specific MT-based subcellular organelle and sheds light on the requirements of tubulin isotypes in cilia.
Assuntos
Cílios , Tubulina (Proteína) , Animais , Camundongos , Axonema/metabolismo , Cílios/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismoRESUMO
Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.
Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Lisencefalia , Malformações do Sistema Nervoso , Humanos , Animais , Camundongos , Lisencefalia/genética , Alelos , Tubulina (Proteína)/genética , Fenótipo , Malformações do Sistema Nervoso/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genéticaRESUMO
Alpha-tubulin 4A encoding gene (TUBA4A) has been associated with familial amyotrophic lateral sclerosis and frontotemporal dementia, based on identification of likely pathogenic variants in patients from distinct amyotrophic lateral sclerosis and frontotemporal dementia cohorts. By screening a multicentric French cohort of 448 unrelated probands presenting with cerebellar ataxia, we identified ultra-rare TUBA4A missense variants, all being absent from public databases and predicted pathogenic by multiple in silico tools. In addition, gene burden analyses in the 100 000 Genomes project (100KGP) showed enrichment of TUBA4A rare variants in the inherited ataxia group compared to controls [odds ratio: 57.0847 (10.2-576.7); P = 4.02 ×10-7]. Taken together, we report 12 patients presenting with spasticity and/or cerebellar ataxia and harbouring a predicted pathogenic TUBA4A missense mutation, including five confirmed de novo cases and a mutation previously reported in a large family presenting with spastic ataxia. Cultured fibroblasts from three patients harbouring distinct TUBA4A missense showed significant alterations in microtubule organization and dynamics, providing insight of TUBA4A variants pathogenicity. Our data confirm the identification of a hereditary spastic ataxia disease gene with variable age of onset, expanding the clinical spectrum of TUBA4A associated phenotypes.
Assuntos
Espasticidade Muscular , Mutação de Sentido Incorreto , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Masculino , Feminino , Pessoa de Meia-Idade , Espasticidade Muscular/genética , Mutação de Sentido Incorreto/genética , Adulto , Idoso , Ataxia Cerebelar/genética , Ataxias Espinocerebelares/genética , Linhagem , Estudos de Coortes , França , Deficiência Intelectual , Atrofia ÓpticaRESUMO
Autosomal recessive microcephaly and chorioretinopathy-1 (MCCRP1) is a rare Mendelian disorder resulting from biallelic loss of function variants in Tubulin-Gamma Complex Associated Protein 6 (TUBGCP6, MIM#610053). Clinical features of this disorder include microcephaly, cognitive impairment, dysmorphic features, and variable ophthalmological anomalies including chorioretinopathy. Microcephaly can be recognized prenatally and visual impairment becomes evident during the first year of life. The clinical presentation resembles the findings in some acquired conditions such as congenital toxoplasmosis and cytomegalovirus infections; thus, it is important to recognize and diagnose this syndrome in view of its impact on patient health management and familial reproductive plans. To date, only seven molecularly confirmed patients from five unrelated families have been reported. We report an additional four unrelated patients with TUBGCP6 variants including one prenatal diagnosis and review the clinical phenotypes and genotypes of all the known cases. This report expands the molecular and phenotypic spectrum of TUBGCP6 and includes additional prenatal findings associated with MCCRP1.
Assuntos
Microcefalia , Doenças Retinianas , Gravidez , Humanos , Feminino , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/complicações , Genótipo , Fenótipo , Proteínas Associadas aos Microtúbulos/genéticaRESUMO
OBJECTIVE: To report on a large cohort of fetuses with mild forms of tubulinopathy and to define prenatal ultrasound and magnetic resonance imaging (MRI) features that can facilitate prenatal diagnosis. METHODS: This was a retrospective multicenter study of fetuses diagnosed between January 2007 and February 2022 with a mild tubulinopathy (without lissencephaly or microlissencephaly). We collected and reviewed brain imaging and genetic data, and defined major criteria as findings observed in ≥ 70% of the patients and minor criteria as those observed in ≥ 50% but < 70% of the patients. RESULTS: Our cohort included 34 fetuses. The mean gestational age at ultrasound screening, when suspicion of a central nervous system anomaly was first raised, was 24.2 (range, 17-33) weeks. Callosal anomalies (n = 19 (56%)) and abnormal ventricles (n = 18 (53%)) were the main reasons for referral. The mean gestational age at neurosonography was 28.3 (range, 23-34) weeks and that at MRI was 30.2 (range, 24-35) weeks. Major ultrasound criteria were midline distortion, ventricular asymmetry, dysmorphic and/or dilated frontal horn(s) and abnormal sulcation. Minor ultrasound criteria were distortion of the cavum septi pellucidi, abnormal corpus callosum, absent or asymmetric olfactory sulci, ventriculomegaly and basal ganglia dysmorphism. Major MRI criteria were midline distortion, distortion of the cavum septi pellucidi, ventricular asymmetry, dilatation (generally unilateral) and/or distortion, dysmorphic and/or dilated frontal horn(s) and abnormal sulcation (mainly dysgyria). Minor MRI criteria were absent or asymmetric olfactory sulci, abnormal bulge of the pons, anteroposterior diameter of the pons ≤ 5th centile and brainstem asymmetry. A mutation was found in TUBB3 (44.1% of cases), TUBB (23.5%), TUBB2B (14.7%) or TUBA1A (17.6%). The mutation was inherited from a parent in 18/34 cases. The pregnancy was terminated in 23/34 cases. CONCLUSIONS: Prenatal diagnosis of mild forms of tubulinopathy is possible but challenging. We have defined, in this large series of fetuses, major and minor criteria that can help identify this entity in utero. Most findings can be visualized on ultrasound. This evaluation is also important for prenatal counseling. Once a prenatal diagnosis of mild tubulinopathy is suspected, the family members should be referred for exome sequencing and MRI. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Assuntos
Malformações do Sistema Nervoso , Ultrassonografia Pré-Natal , Gravidez , Feminino , Humanos , Lactente , Ultrassonografia Pré-Natal/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/anormalidades , Diagnóstico Pré-Natal/métodos , Feto/diagnóstico por imagem , Feto/anormalidades , Idade Gestacional , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodosRESUMO
Mutations in the tubulin-specific chaperon D (TBCD) gene, involved in the assembly and disassembly of the α/ß-tubulin heterodimers, have been reported in early-onset progressive neurodevelopment regression, with epilepsy and mental retardation. We describe a rare homozygous variant in TBCD, namely c.881G>A/p.Arg294Gln, in a young woman with a phenotype dominated by distal motorneuronopathy and mild mental retardation, with neuroimaging evidence of corpus callosum hypoplasia. The peculiar phenotype is discussed in light of the molecular interpretation, enriching the literature data on tubulinopathies generated from TBCD mutations.
Assuntos
Epilepsia , Deficiência Intelectual , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Deficiência Intelectual/genética , Tubulina (Proteína)/metabolismoRESUMO
The recent finding that some patients with fetal akinesia deformation sequence (FADS) carry variants in the TUBB2B gene has prompted us to add to the existing literature a first description of two fetal FADS cases carrying TUBA1A variants. Hitherto, only isolated cortical malformations have been described with TUBA1A mutation, including microlissencephaly, lissencephaly, central pachygyria and polymicrogyria-like cortical dysplasia, generalized polymicrogyria cortical dysplasia, and/or the "simplified" gyral pattern. The neuropathology of our fetal cases shows several common features of tubulinopathies, in particular, the dysmorphism of the basal ganglia, as the most pathognomonic sign. The cortical ribbon anomalies were extremely severe and concordant with the complex cortical malformation. In conclusion, we broaden the phenotypic spectrum of TUBA1A variants, to include FADS.
Assuntos
Artrogripose , Lisencefalia , Malformações do Desenvolvimento Cortical , Polimicrogiria , Artrogripose/diagnóstico , Artrogripose/genética , Humanos , Lisencefalia/genética , Malformações do Desenvolvimento Cortical/genética , Mutação , Tubulina (Proteína)/genéticaRESUMO
PURPOSE: TUBA1A and TUBB2B tubulinopathies are rare neurodevelopmental disorders characterized by cortical and extracortical malformations and heterogenic phenotypes. There is a need for quantitative clinical endpoints that will be beneficial for future diagnostic and therapeutic trials. METHODS: Quantitative natural history modeling of individuals with TUBA1A and TUBB2B tubulinopathies from clinical reports and database entries of DECIPHER and ClinVar. Main outcome measures were age at disease onset, survival, and diagnostic delay. Phenotypical, neuroradiological, and histopathological features were descriptively illustrated. RESULTS: Mean age at disease onset was 4 (TUBA1A) and 6 months (TUBB2B), respectively. Mortality was equally estimated with 7% at 3.2 (TUBA1A) and 8.0 years (TUBB2B). Diagnostic delay was significantly higher in TUBB2B (12.3 years) compared with TUBA1A tubulinopathy (4.2 years). We delineated the isotype-dependent clinical, neuroradiological, and histopathological phenotype of affected individuals and present brain malformations associated with epilepsy and an unfavorable course of disease. CONCLUSION: The natural history of tubulinopathies is defined by the genotype and associated brain malformations. Defined data on estimated survival, diagnostic delay, and disease characteristics of TUBA1A and TUBB2B tubulinopathy will help to raise disease awareness and encourage future clinical trials to optimize genetic testing, family counseling, and supportive care.
Assuntos
Diagnóstico Tardio , Tubulina (Proteína) , Estudos Transversais , Humanos , Mutação , Fenótipo , Tubulina (Proteína)/genéticaRESUMO
To illustrate the prenatal cerebral imaging features associated with tubulinopathy, we report on five affected fetuses from unrelated families, with a de-novo heterozygous variant in a tubulin gene (TUBA1A, TUBB2B or TUBB3). We identified two distinct prenatal imaging patterns related to tubulinopathy: a severe form, characterized by enlarged germinal matrices, microlissencephaly and a kinked brainstem; and a mild form which has not been reported previously in the prenatal literature. The latter form is associated with non-specific features, including an asymmetric brainstem, corpus callosal dysgenesis, a lack of Sylvian fissure operculization and distortion of the anterior part of the interhemispheric fissure with subsequent impacted medial borders of the frontal lobes, the combination of which, in the absence of additional extracerebral anomalies, is highly suggestive of tubulinopathy. Copyright © 2020 ISUOG. Published by John Wiley & Sons Ltd.
Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/embriologia , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/embriologia , Ultrassonografia Pré-Natal , Tronco Encefálico/anormalidades , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/embriologia , Córtex Cerebral/anormalidades , Feminino , Feto/anormalidades , Feto/diagnóstico por imagem , Feto/embriologia , Variação Genética , Humanos , Malformações do Desenvolvimento Cortical/genética , Ilustração Médica , Microcefalia/diagnóstico por imagem , Microcefalia/embriologia , Gravidez , Tubulina (Proteína)/genéticaRESUMO
Leber congenital amaurosis (LCA) is a neurodegenerative disease of photoreceptor cells that causes blindness within the first year of life. It occasionally occurs in syndromic metabolic diseases and plurisystemic ciliopathies. Using exome sequencing in a multiplex family and three simplex case subjects with an atypical association of LCA with early-onset hearing loss, we identified two heterozygous mutations affecting Arg391 in ß-tubulin 4B isotype-encoding (TUBB4B). Inspection of the atomic structure of the microtubule (MT) protofilament reveals that the ß-tubulin Arg391 residue contributes to a binding pocket that interacts with α-tubulin contained in the longitudinally adjacent αß-heterodimer, consistent with a role in maintaining MT stability. Functional analysis in cultured cells overexpressing FLAG-tagged wild-type or mutant TUBB4B as well as in primary skin-derived fibroblasts showed that the mutant TUBB4B is able to fold, form αß-heterodimers, and co-assemble into the endogenous MT lattice. However, the dynamics of growing MTs were consistently altered, showing that the mutations have a significant dampening impact on normal MT growth. Our findings provide a link between sensorineural disease and anomalies in MT behavior and describe a syndromic LCA unrelated to ciliary dysfunction.
Assuntos
Amaurose Congênita de Leber/genética , Microtúbulos/genética , Tubulina (Proteína)/genética , Adulto , Sítios de Ligação/genética , Células Cultivadas , Criança , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Células Fotorreceptoras/metabolismo , Tubulina (Proteína)/metabolismo , Sequenciamento do ExomaRESUMO
The tubulinopathies refer to a wide range of brain malformations caused by mutations in one of the seven genes encoding different tubulin's isotypes. The ß-tubulin isotype III (TUBB3) gene has a primary function in nervous system development and axon generation and maintenance, due to its neuron-specific expression pattern. A recurrent heterozygous mutation, c.1228G > A; p.E410K, in TUBB3 gene is responsible of a rare disorder clinically characterized by congenital fibrosis of the extraocular muscle type 3 (CFEOM3), intellectual disability and a wide range of neurological and endocrine abnormalities. Other mutations have been described spanning the entire gene and genotype-phenotype correlations have been proposed. We report on a 3-year-old boy in whom clinical exome sequencing allowed to identify a de novo TUBB3 E410K mutation as the molecular cause underlying a complex phenotype characterized by a severe bilateral palpebral ptosis refractory to eye surgery, psychomotor delay, absent speech, hypogonadism, celiac disease, and cyclic vomiting. Brain MRI revealed thinning of the corpus callosum with no evidence of malformation cortical dysplasia. We reviewed available records of patients with TUBB3 E410K mutation and compared their phenotype with the clinical outcome of patients with other mutations in TUBB3 gene. The present study confirms that TUBB3 E410K results in a clinically recognizable phenotype, unassociated to the distinct cortical dysplasia caused by other mutations in the same gene. Early molecular characterization of TUBB3 E410K syndrome is critical for targeted genetic counseling and prompt prospective care in term of neurological, ophthalmological, endocrine, and gastrointestinal follow-up.
Assuntos
Fibrose/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Malformações do Desenvolvimento Cortical/genética , Oftalmoplegia/genética , Tubulina (Proteína)/genética , Encéfalo/anormalidades , Pré-Escolar , Fibrose/complicações , Fibrose/diagnóstico , Fibrose/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Estudos de Associação Genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/patologia , Neurônios/metabolismo , Neurônios/patologia , Oftalmoplegia/complicações , Oftalmoplegia/diagnóstico , Oftalmoplegia/patologia , Sequenciamento do ExomaRESUMO
Tubulinopathies are rare neurological disorders caused by alterations in tubulin structure and function, giving rise to a wide range of brain abnormalities involving neuronal proliferation, migration, differentiation and axon guidance. TUBB is one of the ten ß-tubulin encoding genes present in the human genome and is broadly expressed in the developing central nervous system and the skin. Mutations in TUBB are responsible for two distinct pathological conditions: the first is characterized by microcephaly and complex structural brain malformations and the second, also known as "circumferential skin creases Kunze type" (CSC-KT), is associated to neurological features, excess skin folding and growth retardation. We used a combination of immunocytochemical and cellular approaches to explore, on patients' derived fibroblasts, the functional consequences of two TUBB variants: the novel mutation (p.N52S), associated with basal ganglia and cerebellar dysgenesis, and the previously reported variant (p.M73T), linked to microcephaly, corpus callosum agenesis and CSC-KT skin phenotype. Our results demonstrate that these variants impair microtubule (MT) function and dynamics. Most importantly, our studies show an altered epidermal growth factor (EGF) and transferrin (Tf) intracellular vesicle trafficking in both patients' fibroblasts, suggesting a specific role of TUBB in MT-dependent vesicular transport.
Assuntos
Microtúbulos/metabolismo , Mutação/genética , Vesículas Transportadoras/metabolismo , Tubulina (Proteína)/genética , Sequência de Aminoácidos , Movimento Celular/efeitos dos fármacos , Criança , Análise Mutacional de DNA , Fator de Crescimento Epidérmico/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imageamento por Ressonância Magnética , Modelos Moleculares , Nocodazol/farmacologia , Fenótipo , Transporte Proteico , Transferrina/metabolismo , Tubulina (Proteína)/químicaRESUMO
Circumferential skin creases Kunze type (CSC-KT) is a specific congenital entity with an unknown genetic cause. The disease phenotype comprises characteristic circumferential skin creases accompanied by intellectual disability, a cleft palate, short stature, and dysmorphic features. Here, we report that mutations in either MAPRE2 or TUBB underlie the genetic origin of this syndrome. MAPRE2 encodes a member of the microtubule end-binding family of proteins that bind to the guanosine triphosphate cap at growing microtubule plus ends, and TUBB encodes a ß-tubulin isotype that is expressed abundantly in the developing brain. Functional analyses of the TUBB mutants show multiple defects in the chaperone-dependent tubulin heterodimer folding and assembly pathway that leads to a compromised yield of native heterodimers. The TUBB mutations also have an impact on microtubule dynamics. For MAPRE2, we show that the mutations result in enhanced MAPRE2 binding to microtubules, implying an increased dwell time at microtubule plus ends. Further, in vivo analysis of MAPRE2 mutations in a zebrafish model of craniofacial development shows that the variants most likely perturb the patterning of branchial arches, either through excessive activity (under a recessive paradigm) or through haploinsufficiency (dominant de novo paradigm). Taken together, our data add CSC-KT to the growing list of tubulinopathies and highlight how multiple inheritance paradigms can affect dosage-sensitive biological systems so as to result in the same clinical defect.
Assuntos
Encéfalo/metabolismo , Cútis Laxa/congênito , Hamartoma/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Mutação , Anormalidades da Pele/genética , Pele/metabolismo , Tubulina (Proteína)/genética , Adolescente , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Criança , Cútis Laxa/genética , Cútis Laxa/metabolismo , Cútis Laxa/patologia , Feminino , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genes Recessivos , Hamartoma/metabolismo , Hamartoma/patologia , Haploinsuficiência , Humanos , Lactente , Padrões de Herança , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/patologia , Dobramento de Proteína , Multimerização Proteica , Pele/crescimento & desenvolvimento , Pele/patologia , Anormalidades da Pele/metabolismo , Anormalidades da Pele/patologia , Tubulina (Proteína)/metabolismo , Adulto Jovem , Peixe-ZebraRESUMO
PURPOSE: To estimate diagnostic yield and genotype-phenotype correlations in a cohort of 811 patients with lissencephaly or subcortical band heterotopia. METHODS: We collected DNA from 756 children with lissencephaly over 30 years. Many were tested for deletion 17p13.3 and mutations of LIS1, DCX, and ARX, but few other genes. Among those tested, 216 remained unsolved and were tested by a targeted panel of 17 genes (ACTB, ACTG1, ARX, CRADD, DCX, LIS1, TUBA1A, TUBA8, TUBB2B, TUBB, TUBB3, TUBG1, KIF2A, KIF5C, DYNC1H1, RELN, and VLDLR) or by whole-exome sequencing. Fifty-five patients studied at another institution were added as a validation cohort. RESULTS: The overall mutation frequency in the entire cohort was 81%. LIS1 accounted for 40% of patients, followed by DCX (23%), TUBA1A (5%), and DYNC1H1 (3%). Other genes accounted for 1% or less of patients. Nineteen percent remained unsolved, which suggests that several additional genes remain to be discovered. The majority of unsolved patients had posterior pachygyria, subcortical band heterotopia, or mild frontal pachygyria. CONCLUSION: The brain-imaging pattern correlates with mutations in single lissencephaly-associated genes, as well as in biological pathways. We propose the first LIS classification system based on the underlying molecular mechanisms.
Assuntos
Encéfalo/diagnóstico por imagem , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico , Sequenciamento do Exoma , Lisencefalia/diagnóstico , Encéfalo/fisiopatologia , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico por imagem , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/fisiopatologia , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Humanos , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Lisencefalia/fisiopatologia , Masculino , Mutação/genética , Proteína ReelinaRESUMO
PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as responsible. Our functional assays of disease-associated variant alleles revealed impaired microtubule polymerization, as well as cell migration and proliferation properties, of mutant PRUNE. Additionally, our studies also highlight a potential new role for PRUNE during microtubule polymerization, which is essential for the cytoskeletal rearrangements that occur during cellular division and proliferation. Together these studies define PRUNE as a molecule fundamental for normal human cortical development and define cellular and clinical consequences associated with PRUNE mutation.
Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas de Transporte/genética , Deficiências do Desenvolvimento/genética , Microcefalia/genética , Adolescente , Diferenciação Celular/genética , Movimento Celular/genética , Córtex Cerebral/crescimento & desenvolvimento , Criança , Pré-Escolar , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Feminino , Genes Recessivos , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Lactente , Masculino , Microtúbulos/genética , Microtúbulos/ultraestrutura , Mutação/genética , Linhagem , Monoéster Fosfórico Hidrolases , Adulto JovemRESUMO
Disorders of brain formation can occur from pathogenic variants in various alpha and beta tubulin genes. Heterozygous pathogenic variants in the beta tubulin isotype A gene, TUBB2A, have been recently implicated in brain malformations, seizures, and developmental delay. Limited information is known regarding the phenotypic spectrum associated with pathogenic variants in this gene given the rarity of the condition. We report the sixth individual with a de novo heterozygous TUBB2A pathogenic variant, who presented with a severe neurological phenotype along with unique features of arthrogryposis multiplex congenita, optic nerve hypoplasia, dysmorphic facial features, and vocal cord paralysis, thereby expanding the gene-related phenotype.
Assuntos
Artrogripose/genética , Encefalopatias/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Tubulina (Proteína)/genética , Artrogripose/complicações , Artrogripose/patologia , Encefalopatias/complicações , Encefalopatias/patologia , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Evolução Fatal , Predisposição Genética para Doença , Humanos , MasculinoRESUMO
Lissencephaly ("smooth brain," LIS) is a malformation of cortical development associated with deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. The LIS spectrum includes agyria, pachygyria, and subcortical band heterotopia. Our first classification of LIS and subcortical band heterotopia (SBH) was developed to distinguish between the first two genetic causes of LIS-LIS1 (PAFAH1B1) and DCX. However, progress in molecular genetics has led to identification of 19 LIS-associated genes, leaving the existing classification system insufficient to distinguish the increasingly diverse patterns of LIS. To address this challenge, we reviewed clinical, imaging and molecular data on 188 patients with LIS-SBH ascertained during the last 5 years, and reviewed selected archival data on another â¼1,400 patients. Using these data plus published reports, we constructed a new imaging based classification system with 21 recognizable patterns that reliably predict the most likely causative genes. These patterns do not correlate consistently with the clinical outcome, leading us to also develop a new scale useful for predicting clinical severity and outcome. Taken together, our work provides new tools that should prove useful for clinical management and genetic counselling of patients with LIS-SBH (imaging and severity based classifications), and guidance for prioritizing and interpreting genetic testing results (imaging based- classification).
Assuntos
Córtex Cerebral/fisiopatologia , Lisencefalia/fisiopatologia , Imageamento por Ressonância Magnética , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Criança , Pré-Escolar , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/classificação , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico por imagem , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/fisiopatologia , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Humanos , Lactente , Recém-Nascido , Lisencefalia/classificação , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Mutação , Neuropeptídeos/genética , Fenótipo , Adulto JovemRESUMO
One set of missense mutations in the neuron specific beta tubulin isotype 3 (TUBB3) has been reported to cause malformations of cortical development (MCD), while a second set has been reported to cause isolated or syndromic Congenital Fibrosis of the Extraocular Muscles type 3 (CFEOM3). Because TUBB3 mutations reported to cause CFEOM had not been associated with cortical malformations, while mutations reported to cause MCD had not been associated with CFEOM or other forms of paralytic strabismus, it was hypothesized that each set of mutations might alter microtubule function differently. Here, however, we report two novel de novo heterozygous TUBB3 amino acid substitutions, G71R and G98S, in four patients with both MCD and syndromic CFEOM3. These patients present with moderately severe CFEOM3, nystagmus, torticollis, and developmental delay, and have intellectual and social disabilities. Neuroimaging reveals defective cortical gyration, as well as hypoplasia or agenesis of the corpus callosum and anterior commissure, malformations of hippocampi, thalami, basal ganglia and cerebella, and brainstem and cranial nerve hypoplasia. These new TUBB3 substitutions meld the two previously distinct TUBB3-associated phenotypes, and implicate similar microtubule dysfunction underlying both.
Assuntos
Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/patologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Mutação/genética , Tubulina (Proteína)/genética , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Criança , Pré-Escolar , Feminino , Fibrose , Humanos , Masculino , Dados de Sequência Molecular , Oftalmoplegia , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos , Adulto JovemRESUMO
Tubulinopathies are associated with malformations of cortical development but not Walker-Warburg Syndrome. Intensive monitoring of a Croatian infant presenting as Walker-Warburg Syndrome in utero began at 21 weeks due to increased growth of cerebral ventricles and foetal biparietal diameter. Monitoring continued until Caesarean delivery at 34 weeks where the infant was eutrophic. Clinical assessment of a progressive neurological disorder of unknown aetiology found a macrocephalic head and markedly hypoplastic genitalia with a micropenis. Neurological examination showed generalized hypotonia with very rare spontaneous movements, hypotonia-induced respiratory insufficiency and ventilator dependence, and generalized myoclonus intensifying during manipulation. With clinical features of hypotonia, lissencephaly, and brain malformations, Walker-Warburg Syndrome was suspected; however, eye anomalies were absent. Genetic trio analysis via whole-exome sequencing only identified a novel de novo mutation in the TUBA1A gene (NM_006009.4:c.848A>G; NP_006000.2:p.His283Arg) in the infant, who died at 2 months of age, as the likely cause. We report a previously unpublished, very rare heterozygous TUBA1A mutation with clinical features of macrocephaly and hypoplastic genitalia which have not previously been associated with the gene. The absence of eye phenotypes or mutations in Walker-Warburg-associated genes confirm this as not a new presentation of Walker-Warburg Syndrome but a novel TUBA1A tubulinopathy for neonatologists to be aware of.
Assuntos
Tubulina (Proteína) , Síndrome de Walker-Warburg , Humanos , Tubulina (Proteína)/genética , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia , Feminino , Recém-Nascido , Lactente , Mutação , Sequenciamento do Exoma , Masculino , Croácia , Evolução FatalRESUMO
Tubulinopathies encompass neurodevelopmental disorders caused by mutations in genes encoding for different isotypes of α- and ß-tubulins, the structural components of microtubules. Less frequently, mutations in tubulins may underlie neurodegenerative disorders. In the present study, we report two families, one with 11 affected individuals and the other with a single patient, carrying a novel, likely pathogenic, variant (p. Glu415Lys) in the TUBA4A gene (NM_006000). The phenotype, not previously described, is that of spastic ataxia. Our findings widen the phenotypic and genetic manifestations of TUBA4A variants and add a new type of spastic ataxia to be taken into consideration in the differential diagnosis.