Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.066
Filtrar
1.
Mol Cell ; 84(8): 1585-1600.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38479385

RESUMO

Myriad physiological and pathogenic processes are governed by protein levels and modifications. Controlled protein activity perturbation is essential to studying protein function in cells and animals. Based on Trim-Away technology, we screened for truncation variants of E3 ubiquitinase Trim21 with elevated efficiency (ΔTrim21) and developed multiple ΔTrim21-based targeted protein-degradation systems (ΔTrim-TPD) that can be transfected into host cells. Three ΔTrim-TPD variants are developed to enable chemical and light-triggered programmable activation of TPD in cells and animals. Specifically, we used ΔTrim-TPD for (1) red-light-triggered inhibition of HSV-1 virus proliferation by degrading the packaging protein gD, (2) for chemical-triggered control of the activity of Cas9/dCas9 protein for gene editing, and (3) for blue-light-triggered degradation of two tumor-associated proteins for spatiotemporal inhibition of melanoma tumor growth in mice. Our study demonstrates that multiple ΔTrim21-based controllable TPD systems provide powerful tools for basic biology research and highlight their potential biomedical applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteínas/metabolismo , Proteólise , Mamíferos/metabolismo
2.
Trends Biochem Sci ; 46(3): 213-224, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33268216

RESUMO

Poly(ß-L-malic acid) (PMLA) is a natural polyester produced by numerous microorganisms. Regarding its biosynthetic machinery, a nonribosomal peptide synthetase (NRPS) is proposed to direct polymerization of L-malic acid in vivo. Chemically versatile and biologically compatible, PMLA can be used as an ideal carrier for several molecules, including nucleotides, proteins, chemotherapeutic drugs, and imaging agents, and can deliver multimodal theranostics through biological barriers such as the blood-brain barrier. We focus on PMLA biosynthesis in microorganisms, summarize the physicochemical and physiochemical characteristics of PMLA as a naturally derived polymeric delivery platform at nanoscale, and highlight the attachment of functional groups to enhance cancer detection and treatment.


Assuntos
Neoplasias , Polímeros , Humanos , Malatos , Neoplasias/tratamento farmacológico
3.
Cell Mol Life Sci ; 81(1): 68, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289472

RESUMO

Aminopeptidase N/CD13, a membrane-bound enzyme upregulated in tumor vasculature and involved in angiogenesis, can be used as a receptor for the targeted delivery of drugs to tumors through ligand-directed targeting approaches. We describe a novel peptide ligand (VGCARRYCS, called "G4") that recognizes CD13 with high affinity and selectivity. Enzymological and computational studies showed that G4 is a competitive inhibitor that binds to the catalytic pocket of CD13 through its N-terminal region. Fusing the peptide C-terminus to tumor necrosis factor-alpha (TNF) or coupling it to a biotin/avidin complex causes loss of binding and inhibitory activity against different forms of CD13, including natural or recombinant ectoenzyme and a membrane form expressed by HL60 promyelocytic leukemia cells (likely due to steric hindrance), but not binding to a membrane form of CD13 expressed by endothelial cells (ECs). Furthermore, G4-TNF systemically administered to tumor-bearing mice exerted anticancer effects through a CD13-targeting mechanism, indicating the presence of a CD13 form in tumor vessels with an accessible binding site. Biochemical studies showed that most CD13 molecules expressed on the surface of ECs are catalytically inactive. Other functional assays showed that these molecules can promote endothelial cell adhesion to plates coated with G4-avidin complexes, suggesting that the endothelial form of CD13 can exert catalytically independent biological functions. In conclusion, ECs express a catalytically inactive form of CD13 characterized by an accessible conformation that can be selectively targeted by G4-protein conjugates. This form of CD13 may represent a specific target receptor for ligand-directed targeted delivery of therapeutics to tumors.


Assuntos
Antígenos CD13 , Células Endoteliais , Leucemia Promielocítica Aguda , Animais , Camundongos , Antígenos CD13/antagonistas & inibidores , Ligantes
4.
Proc Natl Acad Sci U S A ; 119(19): e2123483119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507878

RESUMO

Immunotherapy approaches focusing on T cells have provided breakthroughs in treating solid tumors. However, there remains an opportunity to drive anticancer immune responses via other cell types, particularly myeloid cells. ATRC-101 was identified via a target-agnostic process evaluating antibodies produced by the plasmablast population of B cells in a patient with non-small cell lung cancer experiencing an antitumor immune response during treatment with checkpoint inhibitor therapy. Here, we describe the target, antitumor activity in preclinical models, and data supporting a mechanism of action of ATRC-101. Immunohistochemistry studies demonstrated tumor-selective binding of ATRC-101 to multiple nonautologous tumor tissues. In biochemical analyses, ATRC-101 appears to target an extracellular, tumor-specific ribonucleoprotein (RNP) complex. In syngeneic murine models, ATRC-101 demonstrated robust antitumor activity and evidence of immune memory following rechallenge of cured mice with fresh tumor cells. ATRC-101 increased the relative abundance of conventional dendritic cell (cDC) type 1 cells in the blood within 24 h of dosing, increased CD8+ T cells and natural killer cells in blood and tumor over time, decreased cDC type 2 cells in the blood, and decreased monocytic myeloid-derived suppressor cells in the tumor. Cellular stress, including that induced by chemotherapy, increased the amount of ATRC-101 target in tumor cells, and ATRC-101 combined with doxorubicin enhanced efficacy compared with either agent alone. Taken together, these data demonstrate that ATRC-101 drives tumor destruction in preclinical models by targeting a tumor-specific RNP complex leading to activation of innate and adaptive immune responses.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias , Imunidade Adaptativa , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Camundongos , Neoplasias/patologia
5.
Proc Natl Acad Sci U S A ; 119(29): e2203994119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858319

RESUMO

The development of more effective tumor therapy remains challenging and has received widespread attention. In the past decade, there has been growing interest in synergistic tumor therapy based on supramolecular coordination complexes. Herein, we describe two triangular metallacycles (1 and 2) constructed by the formation of pyridyl boron dipyrromethene (BODIPY)-platinum coordination. Metallacycle 2 had considerable tumor penetration, as evidenced by the phenylthiol-BODIPY ligand imparting red fluorescent emission at ∼660 nm, enabling bioimaging, and transport visualization within the tumor. Based on the therapeutic efficacy of the platinum(II) acceptor and high singlet oxygen (1O2) generation ability of BODIPY, 2 was successfully incorporated into nanoparticles and applied in chemo-photodynamic tumor therapy against malignant human glioma U87 cells, showing excellent synergistic therapeutic efficacy. A half-maximal inhibitory concentration of 0.35 µM was measured for 2 against U87 cancer cells in vitro. In vivo experiments indicated that 2 displayed precise tumor targeting ability and good biocompatibility, along with strong antitumor effects. This work provides a promising approach for treating solid tumors by synergistic chemo-photodynamic therapy of supramolecular coordination complexes.


Assuntos
Compostos de Boro , Neoplasias , Fotoquimioterapia , Compostos de Boro/uso terapêutico , Linhagem Celular Tumoral , Complexos de Coordenação/uso terapêutico , Sinergismo Farmacológico , Humanos , Neoplasias/tratamento farmacológico , Platina/uso terapêutico , Porfobilinogênio/análogos & derivados
6.
Nano Lett ; 24(25): 7698-7705, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869496

RESUMO

Highly efficient recognition of cancer cells by immune cells is important for successful therapeutic-cell-based cancer immunotherapy. Herein, we present a facile NIR-II nanoadaptor [hyaluronic acid (HA)/dibenzocyclooctyne (DBCO)-Au:Ag2Te quantum dots (QDs)] for enhancing the tumor recognition and binding ability of natural killer (NK) cells via a bio-orthogonal click reaction in vivo. The Nanoadaptor possesses superior tumor-targeting capacity, facilitating the accumulation of the chemical receptor DBCO at the tumor sites. Subsequently, the enrichment of DBCO on tumor cell surfaces provides multivalent recognition sites for capturing pretreated azide engineered NK92 cells (NK92-N3) through an efficient click reaction, thereby significantly enhancing the therapeutical efficiency. The dynamic process of nanoadaptor-mediated recognition of NK cells to tumor cells could be vividly observed using multiplexed NIR-II fluorescence imaging in a mouse model of lung cancer. Such a nanoadaptor strategy can be extended to other therapeutic cellular systems and holds promise for future clinical applications.


Assuntos
Química Click , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Animais , Camundongos , Humanos , Pontos Quânticos/química , Ácido Hialurônico/química , Linhagem Celular Tumoral , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Ouro/química , Imunoterapia
7.
Curr Issues Mol Biol ; 46(6): 5379-5396, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38920994

RESUMO

The many limitations of implementing anticancer strategies under the term "precision oncology" have been extensively discussed. While some authors propose promising future directions, others are less optimistic and use phrases such as illusion, hype, and false hypotheses. The reality is revealed by practicing clinicians and cancer patients in various online publications, one of which has stated that "in the quest for the next cancer cure, few researchers bother to look back at the graveyard of failed medicines to figure out what went wrong". The message is clear: Novel therapeutic strategies with catchy names (e.g., synthetic "lethality") have not fulfilled their promises despite decades of extensive research and clinical trials. The main purpose of this review is to discuss key challenges in solid tumor therapy that surprisingly continue to be overlooked by the Nomenclature Committee on Cell Death (NCCD) and numerous other authors. These challenges include: The impact of chemotherapy-induced genome chaos (e.g., multinucleation) on resistance and relapse, oncogenic function of caspase 3, cancer cell anastasis (recovery from late stages of apoptosis), and pitfalls of ubiquitously used preclinical chemosensitivity assays (e.g., cell "viability" and tumor growth delay studies in live animals) that score such pro-survival responses as "lethal" events. The studies outlined herein underscore the need for new directions in the management of solid tumors.

8.
Small ; 20(25): e2311101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234132

RESUMO

Developing novel substances to synergize with nanozymes is a challenging yet indispensable task to enable the nanozyme-based therapeutics to tackle individual variations in tumor physicochemical properties. The advancement of machine learning (ML) has provided a useful tool to enhance the accuracy and efficiency in developing synergistic substances. In this study, ML models to mine low-cytotoxicity oncolytic peptides are applied. The filtering Pipeline is constructed using a traversal design and the Autogluon framework. Through the Pipeline, 37 novel peptides with high oncolytic activity against cancer cells and low cytotoxicity to normal cells are identified from a library of 25,740 sequences. Combining dataset testing with cytotoxicity experiments, an 80% accuracy rate is achieved, verifying the reliability of ML predictions. Peptide C2 is proven to possess membranolytic functions specifically for tumor cells as targeted by Pipeline. Then Peptide C2 with CoFe hollow hydroxide nanozyme (H-CF) to form the peptide/H-CF composite is integrated. The new composite exhibited acid-triggered membranolytic function and potent peroxidase-like (POD-like) activity, which induce ferroptosis to tumor cells and inhibits tumor growth. The study suggests that this novel ML-assisted design approach can offer an accurate and efficient paradigm for developing both oncolytic peptides and synergistic peptides for catalytic materials.


Assuntos
Aprendizado de Máquina , Peptídeos , Peptídeos/química , Humanos , Linhagem Celular Tumoral , Animais , Neoplasias/terapia , Antineoplásicos/farmacologia , Antineoplásicos/química , Cobalto/química , Camundongos , Nanoestruturas/química
9.
Small ; : e2402073, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686676

RESUMO

Natural polyphenolic compound rosmarinic acid (RA) has good antitumor activity. However, the distinctive tumor microenvironment, characterized by low pH and elevated levels of glutathione (GSH), enhances the tolerance of tumors to the singular anti-tumor treatment mode using RA, resulting in unsatisfactory therapeutic efficacy. Targeting nonapoptotic programmed cell death processes may provide another impetus to inhibit tumor growth. RA possesses the capability to coordinate with metal elements. To solve the effect restriction of the above single treatment mode, it is proposed to construct a self-assembled nanocomposite, Fe-RA. Under tumor microenvironment, Fe-RA nanocomposite exerts the characteristics of POD-like enzyme activity and depletion of GSH, producing a large amount of hydroxyl radical (·OH) while disrupting the antioxidant defense system of tumor cells. Moreover, due to the enhanced permeability and retention effect (EPR), Fe-RA can transport Fe2+ to a greater extent to tumor cells and increase intracellular iron content. Causing an imbalance in iron metabolism in tumor cells and promoting cell ferroptosis. The results of the synchrotron X-ray absorption spectroscopy (XAS) and high-resolution mass spectrometry (HRMS) prove the successful complexation of Fe-RA nanocomposite. Density functional theory (DFT) explains the efficient catalytic mechanism of its peroxide-like enzyme activity and the reaction principle with GSH.

10.
Small ; 20(21): e2309704, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100215

RESUMO

Single-atom nanozymes (SAzymes) are emerging natural enzyme mimics and have attracted much attention in the biomedical field. SAzymes with Metal─Nx sites designed on carbon matrixes are currently the mainstream in research. It is of great significance to further expand the types of SAzymes to enrich the nanozyme library. Single-atom alloys (SAAs) are a material in which single-atom metal sites are dispersed onto another active metal matrix, and currently, there is limited research on their enzyme-like catalytic performance. In this work, a biodegradable Pt1Pd SAA is fabricated via a simple galvanic replacement strategy, and for the first time reveals its intrinsic enzyme-like catalytic performance including catalase-, oxidase-, and peroxidase-like activities, as well as its photodynamic effect. Experimental characterizations demonstrate that the introduction of single-atom Pt sites contributes to enhancing the affinity of Pt1Pd single-atom alloy nanozyme (SAAzyme) toward substrates, thus exhibiting boosted catalytic efficiency. In vitro and in vivo experiments demonstrate that Pt1Pd SAAzyme exhibits a photo-controlled therapeutic effect, with a tumor inhibition rate of up to 100%. This work provides vital guidance for opening the research direction of SAAs in enzyme-like catalysis.


Assuntos
Ligas , Ligas/química , Animais , Platina/química , Humanos , Catálise , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Camundongos , Fototerapia/métodos
11.
Mol Carcinog ; 63(2): 339-355, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988232

RESUMO

Over 99% of precancerous cervical lesions are associated with human papillomavirus (HPV) infection, with HPV types 16 and 18 (especially type 16) found in over 70% of cervical cancer cases globally. E6, a critical HPV gene, triggers malignant proliferation by degrading p53; however, this mechanism alone cannot fully explain the oncogenic effects of HPV16 E6. Therefore, we aimed to investigate new targets of HPV oncogenic mechanisms. Our results revealed significant changes in nonoxidative pentose phosphate pathway (PPP) metabolites in HPV16-positive cells. However, the role of nonoxidative PPP in HPV-associated cell transformation and tumor development remained unexplored. In this study, we investigated the impact and mechanisms of HPV16 E6 on cervical cancer proliferation using the HPV-negative cervical cancer cell line (C33A). HPV16 E6 was found to promote cervical cancer cell proliferation both in vitro and in vivo, activating the nonoxidative PPP. Transketolase (TKT), a key enzyme in the nonoxidative PPP, is highly expressed in cervical cancer tissues and associated with poor prognosis. HPV16 E6 promotes cervical cancer cell proliferation by upregulating TKT activity through the activation of AKT. In addition, oxythiamine (OT), a TKT inhibitor, hindered tumor growth, with enhanced effects when combined with cisplatin (DDP). In conclusion, HPV16 E6 promotes cervical cancer proliferation by upregulating TKT activity through the activation of AKT. OT demonstrates the potential to inhibit HPV16-positive cervical cancer growth, and when combined with DDP, could further enhance the tumor-suppressive effect of DDP.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Papillomavirus Humano 16/metabolismo , Transcetolase/metabolismo , Neoplasias do Colo do Útero/genética , Infecções por Papillomavirus/genética , Proteínas Oncogênicas Virais/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
12.
J Transl Med ; 22(1): 362, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632563

RESUMO

BACKGROUND: HER3 (ErbB3), a member of the human epidermal growth factor receptor family, is frequently overexpressed in various cancers. Multiple HER3-targeting antibodies and antibody-drug conjugates (ADCs) were developed for the solid tumor treatment, however none of HER3-targeting agent has been approved for tumor therapy yet. We developed DB-1310, a HER3 ADC composed of a novel humanized anti-HER3 monoclonal antibody covalently linked to a proprietary DNA topoisomerase I inhibitor payload (P1021), and evaluate the efficacy and safety of DB-1310 in preclinical models. METHODS: The binding of DB-1310 to Her3 and other HER families were measured by ELISA and SPR. The competition of binding epitope for DB-1310 and patritumab was tested by FACS. The sensitivity of breast, lung, prostate and colon cancer cell lines to DB-1310 was evaluated by in vitro cell killing assay. In vivo growth inhibition study evaluated the sensitivity of DB-1310 to Her3 + breast, lung, colon and prostate cancer xenograft models. The safety profile was also measured in cynomolgus monkey. RESULTS: DB-1310 binds HER3 via a novel epitope with high affinity and internalization capacity. In vitro, DB-1310 exhibited cytotoxicity in numerous HER3 + breast, lung, prostate and colon cancer cell lines. In vivo studies in HER3 + HCC1569 breast cancer, NCI-H441 lung cancer and Colo205 colon cancer xenograft models showed DB-1310 to have dose-dependent tumoricidal activity. Tumor suppression was also observed in HER3 + non-small cell lung cancer (NSCLC) and prostate cancer patient-derived xenograft (PDX) models. Moreover, DB-1310 showed stronger tumor growth-inhibitory activity than patritumab deruxtecan (HER3-DXd), which is another HER3 ADC in clinical development at the same dose. The tumor-suppressive activity of DB-1310 synergized with that of EGFR tyrosine kinase inhibitor, osimertinib, and exerted efficacy also in osimertinib-resistant PDX model. The preclinical assessment of safety in cynomolgus monkeys further revealed DB-1310 to have a good safety profile with a highest non severely toxic dose (HNSTD) of 45 mg/kg. CONCLUSIONS: These finding demonstrated that DB-1310 exerted potent antitumor activities against HER3 + tumors in in vitro and in vivo models, and showed acceptable safety profiles in nonclinical species. Therefore, DB-1310 may be effective for the clinical treatment of HER3 + solid tumors.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias do Colo , Imunoconjugados , Indóis , Neoplasias Pulmonares , Neoplasias da Próstata , Pirimidinas , Inibidores da Topoisomerase I , Animais , Humanos , Masculino , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Epitopos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Macaca fascicularis/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptor ErbB-3 , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Pharm ; 21(6): 2767-2780, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38736196

RESUMO

Erastin can induce ferroptosis in tumor cells as an effective small molecule inhibitor. However, its application is hampered by a lack of water solubility. This study investigated the effects of superparamagnetic iron oxide (SPIO)-erastin-polyethylene glycol (PEG) nanoparticles prepared by loading SPIO-PEG nanoparticles with erastin on ferroptosis. SPIO-erastin-PEG nanoparticles exhibited square and spherical shapes with good dispersibility. The zeta potential and hydrodynamic size of SPIO-erastin-PEG were measured as (-37.68 ± 2.706) mV and (45.75 ± 18.88) nm, respectively. On T2-weighted imaging, the nanosystem showed significant contrast enhancement compared to no-enhancement magnetic resonance imaging (MRI). SPIO-erastin-PEG induced ferroptosis by increasing reactive oxygen species and iron content and promoting the accumulation of lipid peroxides and the degradation of glutathione peroxidase 4. Pharmacokinetic experiments revealed a half-life of 1.25 ± 0.05 h for the SPIO-erastin-PEG solution in circulation. Moreover, significant antitumorigenic effects of SPIO-erastin-PEG have been demonstrated in 5-8F cells and mouse-bearing tumors. These results indicated that the synthesized SPIO-erastin-PEG nanoplatform could induce ferroptosis effects in vitro and in vivo while exhibiting favorable physical characteristics. This approach may provide a new strategy for theranostic nanoplatform for nasopharyngeal cancer.


Assuntos
Ferroptose , Neoplasias Nasofaríngeas , Polietilenoglicóis , Ferroptose/efeitos dos fármacos , Animais , Polietilenoglicóis/química , Camundongos , Humanos , Neoplasias Nasofaríngeas/tratamento farmacológico , Linhagem Celular Tumoral , Imageamento por Ressonância Magnética/métodos , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Compostos Férricos/química , Feminino , Piperazinas
14.
Mol Pharm ; 21(2): 467-480, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266250

RESUMO

Photothermal therapy (PTT) is an effective cancer treatment method. Due to its easy focusing and tunability of the irradiation light, direct and accurate local treatment can be performed in a noninvasive manner by PTT. This treatment strategy requires the use of photothermal agents to convert light energy into heat energy, thereby achieving local heating and triggering biochemical processes to kill tumor cells. As a key factor in PTT, the photothermal conversion ability of photothermal agents directly determines the efficacy of PTT. In addition, photothermal agents generally have photothermal imaging (PTI) and photoacoustic imaging (PAI) functions, which can not only guide the optimization of irradiation conditions but also achieve the integration of disease diagnosis. If the photothermal agents have function of fluorescence imaging (FLI) or fluorescence enhancement, they can not only further improve the accuracy in disease diagnosis but also accurately determine the tumor location through multimodal imaging for corresponding treatment. In this paper, we summarize recent advances in photothermal agents with FLI or fluorescence enhancement functions for PTT and tumor diagnosis. According to the different recognition sites, the application of specific targeting photothermal agents is introduced. Finally, limitations and challenges of photothermal agents with fluorescence imaging/enhancement in the field of PTT and tumor diagnosis are prospected.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Terapia Fototérmica , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Imagem Óptica
15.
Mol Pharm ; 21(7): 3434-3446, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38781419

RESUMO

Chemodynamic therapy (CDT) is a novel antitumor strategy that employs Fenton or Fenton-like reactions to generate highly toxic hydroxyl radical (OH•) from hydrogen peroxide (H2O2) for inducing tumor cell death. However, the antitumor efficacy of the CDT strategy is harshly limited by the redox homeostasis of tumor cells; especially the OH • is easily scavenged by glutathione (GSH) and the intracellular H2O2 level is insufficient in the tumor cells. Herein, we propose the Mn2+-menadione (also known as vitamin K3, MK3) cascade biocatalysis strategy to disrupt the redox homeostasis of tumor cells and induce a OH• storm, resulting in enhanced CDT effect. A nanoliposome encapsulating Mn-MK3 (Mn-MK3@LP) was prepared for the treatment of hepatic tumors in this study. After Mn-MK3@LPs were taken up by tumor cells, menadione could facilitate the production of intracellular H2O2 via redox cycling, and further the cytotoxic OH • burst was induced by Mn2+-mediated Fenton-like reaction. Moreover, high-valent manganese ions were reduced by GSH and the depletion of GSH further disrupted the redox homeostasis of tumor cells, thus achieving synergistically enhanced CDT. Overall, both cellular and animal experiments confirmed that the Mn-MK3@LP cascade biocatalysis nanoliposome exhibited excellent biosafety and tumor suppression efficacy. This study may provide deep insights for developing novel CDT-based strategies for tumor therapy.


Assuntos
Glutationa , Peróxido de Hidrogênio , Radical Hidroxila , Vitamina K 3 , Animais , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Humanos , Camundongos , Glutationa/metabolismo , Glutationa/química , Vitamina K 3/química , Vitamina K 3/farmacologia , Biocatálise , Linhagem Celular Tumoral , Manganês/química , Oxirredução/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Lipossomos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Células Hep G2 , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas/química , Ferro
16.
Mol Pharm ; 21(3): 1526-1536, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38379524

RESUMO

Tumoral thermal defense mechanisms considerably attenuate the therapeutic outcomes of mild-temperature photothermal therapy (PTT). Thus, developing a simple, efficient, and universal therapeutic strategy to sensitize mild-temperature PTT is desirable. Herein, we report self-delivery nanomedicines ACy NPs comprising a near-infrared (NIR) photothermal agent (Cypate), mitochondrial oxidative phosphorylation inhibitor (ATO), and distearoylphosphatidylethanolamine-polyethylene glycol 2000 (DSPE-PEG2000), which have a high drug-loading efficiency that can reverse tumoral thermal resistance, thereby increasing mild-temperature PTT efficacy. ACy NPs achieved targeted tumor accumulation and performed NIR fluorescence imaging capability in vivo to guide tumor PTT for optimized therapeutic outcomes. The released ATO reduced intracellular ATP levels to downregulate multiple heat shock proteins (including HSP70 and HSP90) before PTT, which reversed the thermal resistance of tumor cells, contributing to the excellent results of mild-temperature PTT in vitro and in vivo. Therefore, this study provides a simple, biosafe, advanced, and universal heat shock protein-blocking strategy for tumor PTT.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Nanomedicina , Fototerapia/métodos , Temperatura , Hipertermia Induzida/métodos , Neoplasias/patologia , Linhagem Celular Tumoral
17.
Pharmacol Res ; 204: 107198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692466

RESUMO

In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.


Assuntos
Senescência Celular , Macrófagos , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Microambiente Tumoral/imunologia , Animais , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Macrófagos/imunologia , Senescência Celular/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Fenótipo Secretor Associado à Senescência
18.
Bioorg Chem ; 145: 107237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442613

RESUMO

Overactivation of neddylation has been found in a number of common human tumor-related diseases. In recent years, targeting the neddylation pathway has become an appealing anti-cancer strategy, and it is critical to find neddylation inhibitors with novel structures and higher efficacy. Here, we present the discovery of novel inhibitors of the NEDD8-activating enzyme (NAE) and their antitumor activity in vitro. All synthesized 1,4-disubstituted piperidine compounds were evaluated for antiproliferative activity against MGC-803, MCF-7, A549, and KYSE-30 cells. Among five representative compounds, III-26 bearing a quinazoline motif was identified as the lead one due to the fact that it significantly hindered the neddylation of Cullin1. Cellular mechanisms elucidated that III-26 inhibited the proliferation, migration, and invasion of UBC12-overexpressed MGC-803 cell lines, as well as induced apoptosis and arrested the cell cycle at G2/M phase. Importantly, III-26 reduced NAE activity, thus selectively preventing neddylation of Cullin3 and Cullin1 over other Cullin members. At a dose of 4 µM, III-26 virtually entirely blocked UBC12-NEDD8 conjugation in MGC-803 cells. Our molecular modeling and kinetic investigation suggested that this compound may function as a non-covalent inhibitor of NAE.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose
19.
J Nanobiotechnology ; 22(1): 41, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281957

RESUMO

Malignancy is a major public health problem and among the leading lethal diseases worldwide. Although the current tumor treatment methods have therapeutic effect to a certain extent, they still have some shortcomings such as poor water solubility, short half-life, local and systemic toxicity. Therefore, how to deliver therapeutic agent so as to realize safe and effective anti-tumor therapy become a problem urgently to be solved in this field. As a medium of information exchange and material transport between cells, exosomes are considered to be a promising drug delivery carrier due to their nano-size, good biocompatibility, natural targeting, and easy modification. In this review, we summarize recent advances in the isolation, identification, drug loading, and modification of exosomes as drug carriers for tumor therapy alongside their application in tumor therapy. Basic knowledge of exosomes, such as their biogenesis, sources, and characterization methods, is also introduced herein. In addition, challenges related to the use of exosomes as drug delivery vehicles are discussed, along with future trends. This review provides a scientific basis for the application of exosome delivery systems in oncological therapy.


Assuntos
Exossomos , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/uso terapêutico , Neoplasias/tratamento farmacológico
20.
J Nanobiotechnology ; 22(1): 324, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858692

RESUMO

Breast cancer remains a malignancy that poses a serious threat to human health worldwide. Chemotherapy is one of the most widely effective cancer treatments in clinical practice, but it has some drawbacks such as poor targeting, high toxicity, numerous side effects, and susceptibility to drug resistance. For auto-amplified tumor therapy, a nanoparticle designated GDTF is prepared by wrapping gambogic acid (GA)-loaded dendritic porous silica nanoparticles (DPSNs) with a tannic acid (TA)-Fe(III) coating layer. GDTF possesses the properties of near-infrared (NIR)-enhanced and pH/glutathione (GSH) dual-responsive drug release, photothermal conversion, GSH depletion and hydroxyl radical (·OH) production. When GDTF is exposed to NIR laser irradiation, it can effectively inhibit cell proliferation and tumor growth both in vitro and in vivo with limited toxicity. This may be due to the synergistic effect of enhanced tumor accumulation, and elevated reactive oxygen species (ROS) production, GSH depletion, and TrxR activity reduction. This study highlights the enormous potential of auto-amplified tumor therapy.


Assuntos
Neoplasias da Mama , Glutationa , Nanopartículas , Espécies Reativas de Oxigênio , Dióxido de Silício , Neoplasias da Mama/tratamento farmacológico , Feminino , Nanopartículas/química , Animais , Glutationa/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Dióxido de Silício/química , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Xantonas/química , Xantonas/farmacologia , Taninos/química , Taninos/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Liberação Controlada de Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa