Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(3)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28241473

RESUMO

Tunnel construction workers face many dangers while working under dark conditions, with difficult access and egress, and many potential hazards. To enhance safety at tunnel construction sites, low latency tracking of mobile objects (e.g., heavy-duty equipment) and construction workers is critical for managing the dangerous construction environment. Wireless Sensor Networks (WSNs) are the basis for a widely used technology for monitoring the environment because of their energy-efficiency and scalability. However, their use involves an inherent point-to-point delay caused by duty cycling mechanisms that can result in a significant rise in the delivery latency for tracking mobile objects. To overcome this issue, we proposed a mobility-aware adaptive duty cycling mechanism for the WSNs based on object mobility. For the evaluation, we tested this mechanism for mobile object tracking at a tunnel excavation site. The evaluation results showed that the proposed mechanism could track mobile objects with low latency while they were moving, and could reduce energy consumption by increasing sleep time while the objects were immobile.

2.
Ann Work Expo Health ; 68(7): 713-724, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38816184

RESUMO

Tunnel boring machines (TBMs) are used to excavate tunnels in a manner where the rock is constantly penetrated with rotating cutter heads. Fine particles of the rock minerals are thereby generated. Workers on and in the vicinity of the TBM are exposed to particulate matter (PM) consisting of bedrock minerals including α-quartz. Exposure to respirable α-quartz remains a concern because of the respiratory diseases associated with this exposure. The particle size distribution of PM and α-quartz is of special importance because of its influence on adverse health effects, monitoring and control strategies as well as accurate quantification of α-quartz concentrations. The major aim of our study was therefore to investigate the particle size distribution of airborne PM and α-quartz generated during tunnel excavation using TBMs in an area dominated by gneiss, a metamorphic type of rock. Sioutas cascade impactors were used to collect personal samples on 3 separate days. The impactor fractionates the dust in 5 size fractions, from 10 µm down to below 0.25 µm. The filters were weighted, and the α-quartz concentrations were quantified using X-ray diffraction (XRD) analysis and the NIOSH 7500 method on the 5 size fractions. Other minerals were determined using Rietveld refinement XRD analysis. The size and elemental composition of individual particles were investigated by scanning electron microscopy. The majority of PM mass was collected on the first 3 stages (aerodynamic diameter = 10 to 0.5 µm) of the Sioutas cascade impactor. No observable differences were found for the size distribution of the collected PM and α-quartz for the 3 sampling days nor the various work tasks. However, the α-quartz proportion varied for the 3 sampling days demonstrating a dependence on geology. The collected α-quartz consisted of more particles with sizes below 1 µm than the calibration material, which most likely affected the accuracy of the measured respirable α-quartz concentrations. This potential systematic error is important to keep in mind when analyzing α-quartz from occupational samples. Knowledge of the particle size distribution is also important for control measures, which should target particle sizes that efficiently capture the respirable α-quartz concentration.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Tamanho da Partícula , Material Particulado , Exposição Ocupacional/análise , Material Particulado/análise , Poluentes Ocupacionais do Ar/análise , Humanos , Exposição por Inalação/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Quartzo/análise , Poeira/análise , Difração de Raios X/métodos , Indústria da Construção/instrumentação
3.
Materials (Basel) ; 16(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37049228

RESUMO

The Pile-beam-arch (PBA) method is a new and effective construction method for the urban metro station. It is the key to ensuring the safe construction of the station to clarify the influence of PBA method construction on surface deformation under unfavorable geological and large span conditions. Based on a station of Beijing subway, this paper studies the surface deformation law of the large-span PBA method in different construction stages under silty clay-pebble composite stratum by means of FLAC 3D numerical analysis and field monitoring of level. Then the influence of the excavation scheme of the pilot tunnel and the construction scheme of the secondary lining of the arch on the surface deformation is simulated and analyzed. The results show that, through numerical simulation, the ratio of pilot tunnel excavation: pile-beam construction: vault initial support construction: vault secondary lining construction is about 5:1.1:3.3:0.6. The settlement deformation mainly occurs in the excavation stage of the pilot tunnel. Through the comparative analysis of the field monitoring results and the numerical simulation results, it can be seen that the two results are highly consistent, which verifies the accuracy of the numerical simulation results. The pilot tunnel excavation scheme of excavating the middle first and then excavating both sides, first through the upper layer and then through the lower layer, and the scheme of one-time construction of the secondary lining of the arch are better. The research results promote the further maturity and perfection of large-span PBA method construction under unfavorable geology and provide reference for similar projects.

4.
Sensors (Basel) ; 12(8): 11249-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112655

RESUMO

Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the use and explores the potential of laser scanning technology to accurately track excavation and construction activities of highway tunnels. It provides a detailed overview of the static laser scanning method, its principles of operation and applications for tunnel construction operations. Also, it discusses the planning, execution, data processing and analysis phases of laser scanning activities, with emphasis given on geo-referencing, mesh model generation and cross-section extraction. Specific case studies are considered based on two construction sites in Greece. Particularly, the potential of the method is examined for checking the tunnel profile, producing volume computations and validating the smoothness/thickness of shotcrete layers at an excavation stage and during the completion of excavation support and primary lining. An additional example of the use of the method in the geometric documentation of the concrete lining formwork is examined and comparisons against dimensional tolerances are examined. Experimental comparisons and analyses of the laser scanning method against conventional surveying techniques are also considered.

5.
Materials (Basel) ; 15(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36295159

RESUMO

Due to the sensitivity of sandy soil's mechanical behavior to the particle shape, it is thus of importance for interpreting the effect of particle shape on the ground response induced by tunnel excavation in sandy formations. We conducted a series of 2D DEM (discrete element method) simulations on a common circular tunnel excavation in sandy soil with variable-shaped particles, which are characterized as two descriptors, i.e., aspect ratio (AR) and convexity (C). The macroscopic responses and the microscopic characteristics of the sandy ground are elaborated in detail. The simulation results show obvious asymmetrical features of the excavated ground, which results from the ground heterogeneity caused by the irregular particle shape. In addition, we investigate the roles of AR and C on the ground response and find that reducing AR or increasing C will enlarge the ground settlement, i.e., the sandy ground deformation is more sensitive to the particles with more irregular shapes. However, elongated particles are beneficial for the generation of soil arching with stronger bearing capacity and thus reduce the soil pressure on the tunnel lining. Our findings have important implications for the safety assessment of the tunnel excavation, as well as other underground structure construction in sandy formations.

6.
Materials (Basel) ; 15(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36556754

RESUMO

Due to the complexity of the talus-like rock mass with different values of volumetric block proportion (VPB), it is thus crucial to explore the VBP effect on the excavation-induced ground responses. We conduct a series of 2D DEM (discrete element method) simulations on a common circular tunnel excavation in the talus-like rock mass with different VBPs (0%, 15%, 50%, 85% and 100%). For each VBP, two support scenarios, i.e., unsupported and supported by a rigid lining, are considered. The micro characteristics of the excavation-induced ground responses, including the contact force, force chain, coordination number and shear-slip contact, and the stress distribution and ground settlement are elaborated in detail. Accordingly, three types of talus-like rock masses are identified as soil-, hybrid- and rock-types, corresponding to VBP = 0-15%, 50%, and 85-100%, respectively. It is found that the lining support is essential for maintaining the ground stability of a tunnel excavation in the soil- and hybrid-type talus-like rock masses while the backbones formed by rock blocks in the rock-type talus-like rock mass can provide a certain support for the surrounding ground. Our findings have important implications for optimizing the construction scheme of tunnel excavation in different types of talus-like rock masses.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34207363

RESUMO

Titanium is the ninth most abundant element, approximately 0.7% of the Earth crust. It is used worldwide in large quantities for various applications. The IARC includes TiO2 in Group 2B as possibly carcinogenic to humans suggesting that pathological effects correlate to particle size and shape. This study case quantifies the release of natural TiO2 particles during mining activity, involving meta-basalt and shale lithologies in the Ligurian Alps, during excavation of the Terzo Valico as part of the Trans-European Transport Network. Type, width, length, aspect ratio, and concentration of TiO2 particles in needle habit were determined. The different samplings have reported that airborne concentrations in meta-basalt were 4.21 ff/L and 23.94 ff/L in shale. In both cases, the concentration never exceeds the limits established by various organizations for workers health protection. Nevertheless, TiO2 elongated particles, recognized as rutile, showed the dimensional characteristic of fibres, as reported by WHO. These fibres deserve particular attention because they can reach the alveolar space and trigger inflammation and chronic diseases. The results indicate that monitoring the TiO2 in both working environments and Ti-rich geological formations, associated with epidemiological studies, may represent a useful tool to determine the exposure risk of workers and the general population.


Assuntos
Titânio , Humanos , Tamanho da Partícula
8.
Materials (Basel) ; 11(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142900

RESUMO

In this article, a magnetic sensor is proposed to monitor borehole deviation during tunnel excavation. It is made by piling four super-strong N42 NdFeB cylinder magnets and then encasing them in an aluminum alloy hollow cylinder. The distribution of the magnetic field produced by the magnetic sensor and its summation with the geomagnetic field (GMF) in a global coordinate system are derived based on the theory of magnetic fields. An algorithm is developed to localize the position of the magnetic sensor. The effect of the GMF variation on the effective monitoring range of the magnetic sensor is also studied numerically. Field validation tests are conducted at Jinzhai Pumped-Storage hydroelectric power station, during the excavation of an inclined tunnel in Anhui Province of China. Test results show that the algorithm and the magnetic sensor are used successfully to detect the deviation of the borehole with an estimated error of approximately 0.5 m. The errors are mainly from the measurement errors of the coordinates, of both the test and the measurement points. The effective monitoring range of the magnetic sensor is dependent on the direction of the magnetic sensor as well as the variation of the GMF.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa