Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(1): 411-416, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38146896

RESUMO

We elucidate the flexoelectricity of semiconductors in the high strain gradient regime, the underlying mechanism of which is less understood. By using the generalized Bloch theorem, we uncover a strong flexoelectric-like effect in bent thinfilms of Si and Ge due to a high-strain-gradient-induced band gap closure. We show that an unusual type-II band alignment is formed between the compressed and elongated sides of the bent film. Therefore, upon the band gap closure, electrons transfer from the compressed side to the elongated side to reach the thermodynamic equilibrium, leading to a pronounced change of polarization along the film thickness dimension. The obtained transverse flexoelectric coefficients are unexpectedly high with a quadratic dependence on the film thickness. This new mechanism is extendable to other semiconductor materials with moderate energy gaps. Our findings have important implications for the future applications of flexoelectricity in semiconductor materials.

2.
Nanotechnology ; 35(31)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38670075

RESUMO

Theoretical examination based on first principle computation has been conducted for van der Waals heterostructure (vdwHS) GaAlS2/HfS2including structural, optoelectronic and photocatalytic characteristics. From the adhesion energy calculation, the AB configuration of GaAlS2/HfS2vdwHS is the most stable. A type-II GaAlS2/HfS2vdwHS is a dynamically and thermally stable structure. The band edge position, projected band, and projected charge densities verify the type-II alignment of GaAlS2/HfS2vdwHS. For GaAlS2/HfS2, GaAlS2is acting as a donor and HfS2is acting as an acceptor ensured by the charge density difference plot. The electron localized function validates the weak van der Waals interaction between GaAlS2and HfS2. The GaAlS2/HfS2vdwHS possess an indirect bandgap of 1.54 eV with notable absorption in the visible range. The findings assure that the GaAlS2/HfS2vdwHS is an efficient photocatalyst for pH 4-8. The band alignment of GaAlS2/HfS2is suitable for Z-scheme charge transfer. The strain influenced band edge suggests that the GaAlS2/HfS2vdwHS remains photocatalytic for strain-4%to+6%in both cases of uniaxial and biaxial strains.

3.
Nano Lett ; 23(12): 5705-5712, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37285458

RESUMO

Color-tunable electroluminescence (EL) from a single emitting material can be used to develop single-pixel multicolor displays. However, finding materials capable of broad EL color tuning remains challenging. Herein, we report the observation of broad voltage-tunable EL in colloidal type-II InP/ZnS quantum-dot-seeded CdS tetrapod (TP) LEDs. The EL color can be tuned from red to bluish white by varying the red and blue emission intensities from type-II interfaces and arms, respectively. The capacitor device proves that an external electric field can enhance the color tuning in type-II TPs. COMSOL simulations, numerical calculations, and transient absorption measurements are performed to understand the underlying photophysical mechanism. Our results indicate that the reduced hole relaxation rate from the arm to the quantum dot core can enhance the emission from the CdS arms, which is favorable for EL color tuning. This study provides a novel method to realize voltage-tunable EL colors with potential in display and micro-optoelectronic applications.

4.
Small ; 18(34): e2202523, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35905495

RESUMO

Polarization-sensitive photodetectors based on van der Waals heterojunctions (vdWH) have excellent polarization-resolved optoelectronic properties that can enable the applications in polarized light identification and imaging. With the development of optical microcomputer control systems (OMCS), it is crucial and energy efficient to adopt the self-powered and polarization-resolved signal-generators to optimize the circuit design of OMCS. In this work, the selenium (Se) flakes with in-plane anisotropy and p-type character are grown and incorporated with n-type tungsten disulfide (WS2 ) to construct the type-II vdWH for polarization-sensitive and self-powered photodetectors. Under 405 nm monochrome laser with 1.33 mW cm-2 power density, the photovoltaic device exhibits superior photodetection performance with the photoelectric conversion efficiency (PCE) of 3.6%, the responsivity (R) of 196 mA W-1 and the external quantum efficiency (EQE) of about 60%. The strong in-plane anisotropy of Se crystal structure gives rise to the capability of polarized light detection with anisotropic photocurrent ratio of ≈2.2 under the 405 nm laser (13.71 mW cm-2 ). Benefiting from the well polarization-sensitive and photovoltaic properties, the p-Se/n-WS2 vdWH is successfully applied in the OMCS as multivalued signal trigger. This work develops the new anisotropic vdWH and demonstrates its feasibility for applications in logic circuits and control systems.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39001805

RESUMO

The attractive physical properties of two-dimensional (2D) semiconductors in group IVA-VIA have been fully revealed in recent years. Combining them with 2D ambipolar materials to construct van der Waals heterojunctions (vdWHs) can offer tremendous opportunities for designing multifunctional electronic and optoelectronic devices, such as logic switching circuits, half-wave rectifiers, and broad-spectrum photodetectors. Here, an optimized SnSe0.75S0.25 is grown to design a SnSe0.75S0.25/MoTe2 vdWH for logic operation and wide-spectrum photodetection. Benefiting from the excellent gate modulation under the appropriate sulfur substitution and type-II band alignment, the device exhibits reconfigurable antiambipolar and ambipolar transfer behaviors at positive and negative source-drain voltage (Vds), enabling stable XNOR logic operation. It also features a gate-modulated positive and negative rectifying behavior with rectification ratios of 265:1 and 1:196, confirming its potential as half-wave logic rectifiers. Besides, the device can respond from visible to infrared wavelength up to 1400 nm. Under 635 nm illumination, the maximum responsivity of 1.16 A/W and response time of 657/500 µs are achieved at the Vds of -2 V. Furthermore, due to the strong in-plane anisotropic structure of SnSe0.75S0.25-alloyed nanosheet and narrow bandgap of 2H-MoTe2, it shows a broadband polarization-sensitive function with impressive photocurrent anisotropic ratios of 15.6 (635 nm), 7.0 (808 nm), and 3.7 (1310 nm). The direction along the maximum photocurrent can be reconfigurable depending on the wavelengths. These results indicate that our designed alloyed SnSe0.75S0.25/MoTe2 vdWH has reconfigurable logic operation and broadband photodetection capabilities in 2D multifunctional integrated circuits.

6.
ACS Appl Mater Interfaces ; 16(15): 19214-19224, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581080

RESUMO

Near-infrared (NIR) polarization photodetectors with two-dimensional (2D) semiconductors and their van der Waals (vdW) heterostructures have presented great impact for the development of a wide range of technologies, such as in the optoelectronics and communication fields. Nevertheless, the lack of a photogenerated charge carrier at the device's interface leads to a poor charge carrier collection efficiency and a low linear dichroism ratio, hindering the achievement of high-performance optoelectronic devices with multifunctionalities. Herein, we present a type-II violet phosphorus (VP)/InSe vdW heterostructure that is predicted via density functional theory calculation and confirmed by Kelvin probe force microscopy. Benefiting from the type-II band alignment, the VP/InSe vdW heterostructure-based photodetector achieves excellent photodetection performance such as a responsivity (R) of 182.8 A/W, a detectivity (D*) of 7.86 × 1012 Jones, and an external quantum efficiency (EQE) of 11,939% under a 1064 nm photon excitation. Furthermore, the photodetection performance can be enhanced by manipulating the device geometry by inserting a few layers of graphene between the VP and InSe (VP/Gr/InSe). Remarkably, the VP/Gr/InSe vdW heterostructure shows a competitive polarization sensitivity of 2.59 at 1064 nm and can be integrated as an image sensor. This work demonstrates that VP/InSe and VP/Gr/InSe vdW heterostructures will be effective for promising integrated NIR optoelectronics.

7.
J Phys Condens Matter ; 35(50)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37703898

RESUMO

Van der Waals heterobilayers formed by vertically stacked two-dimensional materials could be a viable candidate for optoelectronics. This study carried out first-principles calculations to study the geometrical, electronic and optical properties of heterobilayers consisting transition metal dichalcogenide (TMDC) SnSe2and Janus TMDCs ZrSSe and SnSSe. Eight possible configurations SeSnSe-SSnSe (I), SeSnSe-SeSnS (II), SeSnSe-SZrSe (III), SeSnSe-SeZrS (IV), SSnSe-SZrSe (V), SSnSe-SeZrS (VI), SeSnS-SZrSe (VII) and SeSnS-SeZrS (VIII) are dynamically, thermally, energetically and mechanical stable. Six configurations, (I, II, III, IV, V and VI) have indirect band gaps with type-II band alignments, enhancing carrier lifetime an essential feature for potential applications in photovoltaic and nanoelectronics devices. In contrast, VII and VIII have indirect band gap with a type-I band alignment, facilitating efficient recombination of electron-hole pairs under high irradiation. All heterobilayers demonstrated significant optical absorption in the visible region. These findings highlight the potential utilization of heterobilayers in electronic and optoelectronic devices.

8.
ACS Appl Mater Interfaces ; 15(25): 30504-30516, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37335909

RESUMO

In recent years, polarization-sensitive photodiodes based on one-dimensional/two-dimensional (1D/2D) van der Waals (vdWs) heterostructures have garnered significant attention due to the high specific surface area, strong orientation degree of 1D structures, and large photo-active area and mechanical flexibility of 2D structures. Therefore, they are applicable in wearable electronics, electrical-driven lasers, image sensing, optical communication, optical switches, etc. Herein, 1D Bi2O2Se nanowires have been successfully synthesized via chemical vapor deposition. Impressively, the strongest Raman vibration modes can be achieved along the short edge (y-axis) of Bi2O2Se nanowires with high crystalline quality, which originate from Se and Bi vacancies. Moreover, the Bi2O2Se/MoSe2 photodiode designed with type-II band alignment demonstrates a high rectification ratio of 103. Intuitively, the photocurrent peaks are mainly distributed in the overlapped region under the self-powered mode and reverse bias, within the wavelength range of 400-nm. The resulting device exhibits excellent optoelectrical performances, including high responsivities (R) and fast response speed of 656 mA/W and 350/380 µs (zero bias) and 17.17 A/W and 100/110 µs (-1 V) under 635 nm illumination, surpassing the majority of reported mixed-dimensional photodiodes. The most significant feature of our photodiode is its highest photocurrent anisotropic ratio of ∼2.2 (-0.8 V) along the long side (x-axis) of Bi2O2Se nanowires under 635 nm illumination. The above results reveal a robust and distinctive correlation between structural defects and polarized orientation for 1D Bi2O2Se nanowires. Furthermore, 1D Bi2O2Se nanowires appear to be a great potential candidate for high-performance rectifiers, polarization-sensitive photodiodes, and phototransistors based on mixed vdWs heterostructures.

9.
J Phys Condens Matter ; 35(36)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37267993

RESUMO

Based on first-principles calculations, the structure, electronic and optical properties of g-C3N4/HfSSe heterojunctions have been systematically explored. We prove the stability of two heterojunctions by comparing the binding energies from six different stacking heterojunctions, which name are g-C3N4/SHfSe heterojunction and g-C3N4/SeHfS heterojunction, respectively. It is shown that both heterojunctions behave direct band gaps with type II band alignment. The charge is rearranged at the interface after the heterojunctions are formed, which results in the formation of the built-in electric field. In the ultraviolet, visible and near-infrared regions, excellent light absorption is found in g-C3N4/HfSSe heterojunctions.

10.
ACS Appl Mater Interfaces ; 15(14): 18101-18113, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989425

RESUMO

In recent years, two-dimensional (2D) nonlayered Bi2O2Se-based electronics and optoelectronics have drawn enormous attention owing to their high electron mobility, facile synthetic process, stability to the atmosphere, and moderate narrow band gaps. However, 2D Bi2O2Se-based photodetectors typically present large dark current, relatively slow response speed, and persistent photoconductivity effect, limiting further improvement in fast-response imaging sensors and low-consumption broadband detection. Herein, a Bi2O2Se/2H-MoTe2 van der Waals (vdWs) heterostructure obtained from the chemical vapor deposition (CVD) approach and vertical stacking is reported. The proposed type-II staggered band alignment desirable for suppression of dark current and separation of photoinduced carriers is confirmed by density functional theory (DFT) calculations, accompanied by strong interlayer coupling and efficient built-in potential at the junction. Consequently, a stable visible (405 nm) to near-infrared (1310 nm) response capability, a self-driven prominent responsivity (R) of 1.24 A·W-1, and a high specific detectivity (D*) of 3.73 × 1011 Jones under 405 nm are achieved. In particular, R, D*, fill factor, and photoelectrical conversion efficiency (PCE) can be enhanced to 4.96 A·W-1, 3.84 × 1012 Jones, 0.52, and 7.21% at Vg = -60 V through a large band offset originated from the n+-p junction. It is suggested that the present vdWs heterostructure is a promising candidate for logical integrated circuits, image sensors, and low-power consumption detection.

11.
ACS Appl Mater Interfaces ; 14(9): 11927-11936, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191687

RESUMO

Two-dimensional (2D) van der Waals materials with broadband optical absorption are promising candidates for next-generation UV-vis-NIR photodetectors. FePS3, one of the emerging antiferromagnetic van der Waals materials with a wide bandgap and p-type conductivity, has been reported as an excellent candidate for UV optoelectronics. However, a high sensitivity photodetector with a self-driven mode based on FePS3 has not yet been realized. Here, we report a high-performance and self-powered photodetector based on a multilayer MoSe2/FePS3 type-II n-p heterojunction with a working range from 350 to 900 nm. The presented photodetector operates at zero bias and at room temperature under ambient conditions. It exhibits a maximum responsivity (Rmax) of 52 mA W-1 and an external quantum efficiency (EQEmax) of 12% at 522 nm, which are better than the characteristics of its individual constituents and many other photodetectors made of 2D heterostructures. The high performance of MoSe2/FePS3 is attributed to the built-in electric field in the MoSe2/FePS3 n-p junction. Our approach provides a promising platform for broadband self-driven photodetector applications.

12.
Front Chem ; 10: 1048437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339040

RESUMO

The construction of van der Waals heterostructures offers effective boosting of the photocatalytic performance of two-dimensional materials. In this study, which uses the first-principles method, the electronic and absorptive properties of an emerging ZnO/C2N heterostructure are systematically explored to determine the structure's photocatalytic potential. The results demonstrate that ZnO and C2N form a type-II band alignment heterostructure with a reduced band gap, and hence superior absorption in the visible region. Furthermore, the band edge positions of a ZnO/C2N heterostructure meet the requirements for spontaneous water splitting. The ZnO/C2N heterostructure is known to possess considerably improved carrier mobility, which is advantageous in the separation and migration of carriers. The Gibbs free energy calculation confirms the high catalytic activity of the ZnO/C2N heterostructure for water-splitting reactions. All the aforementioned properties, including band gap, band edge positions, and optical absorption, can be directly tuned using biaxial lateral strain. A suitable band gap, decent band edge positions, high catalytic activity, and superior carrier mobility thus identify a ZnO/C2N heterostructure as a prominent potential photocatalyst for water splitting.

13.
ACS Appl Mater Interfaces ; 14(43): 48812-48820, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36268890

RESUMO

Two-dimensional (2D) material photodetectors have received considerable attention in optoelectronics as a result of their extraordinary properties, such as passivated surfaces, strong light-matter interactions, and broad spectral responses. However, single 2D material photodetectors still suffer from low responsivity, large dark current, and long response time as a result of their atomic-level thickness, large binding energy, and susceptibility to defects. Here, a transition metal trichalcogenide TiS3 with excellent photoelectric characteristics, including a direct bandgap (1.1 eV), high mobility, high air stability, and anisotropy, is selected to construct a type-II heterojunction with few-layer MoS2, aiming to improve the performance of 2D photodetectors. An ultrahigh photoresponsivity of the TiS3/MoS2 heterojunction of 48 666 A/W at 365 nm, 20 000 A/W at 625 nm, and 251 A/W at 850 nm is achieved under light-emitting diode illumination. The response time and dark current are 2 and 3 orders of magnitude lower than those of the current TiS3 photodetector with the highest photoresponsivity (2500 A/W), respectively. Furthermore, polarized four-wave mixing spectroscopy and polarized photocurrent measurements verify its polarization-sensitive characteristics. This work confirms the excellent potential of TiS3/MoS2 heterojunctions for air-stable, high-performance, polarization-sensitive, and multiband photodetectors, and the excellent type-II TiS3/MoS2 heterojunction system may accelerate the design and fabrication of other 2D functional devices.

14.
ACS Appl Mater Interfaces ; 14(2): 3356-3362, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990549

RESUMO

Two-dimensional (2D) hybrid perovskites have been extensively studied as the promising light-sensitive materials in the photodetectors owing to their improved structural stability over that of their three-dimensional counterparts. However, the application of the 2D perovskite-based photodetector in the near-infrared (NIR) region is obstructed by the large intrinsic optical band gap. Herein, we develop a novel van der Waals heterostructure composed of few-layer 2D perovskite/MoS2 nanoflakes, which exhibits high-sensitivity detection performance over a broad spectral region, from the visible region to the telecommunication wavelength (i.e., 1550 nm). In particular, the photoresponsivity and specific detectivity under an 860 nm laser reach 121 A W-1 and 4.3 × 1014 Jones, respectively, whereas the individual nanoflakes show no response under the same wavelength. Meanwhile, the response time at the microsecond (µs) level is obtained, shortened by around 3 orders of magnitude compared to that of the constituting layers. The sensitive and ultrafast photoresponse at the NIR wavelength stems from the strong interlayer transition of sub-band-gap photons and the rapid separation of the photogenerated carriers by the built-in field within the heterojunction area. Our results not only provide an effective approach to achieve sub-band-gap photodetection in 2D perovskite-based structures but also suggest a universal strategy to fabricate high-performance optoelectronic devices.

15.
ACS Nano ; 15(9): 15354-15361, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34523914

RESUMO

Antimony-based metal halide hybrids have attracted enormous attention due to the stereoactive 5s2 electron pair that drives intense triplet broadband emission. However, energy/charge transfer has been rarely achieved for Sb3+-doped materials. Herein, Sb3+ ions are homogeneously doped into 2D [NH3(CH2)4NH3]CdBr4 perovskite (Cd-PVK) using a wet-chemical method. Compared to the weak singlet exciton emission of Cd-PVK at 380 nm, 0.01% Sb3+-doped Cd-PVK exhibits intense triplet emission located at 640 nm with a near-unity quantum yield. Further increasing the doping concentration of Sb3+ completely quenches singlet exciton emission of Cd-PVK, concurrently with enhanced Sb3+ triplet emission. Delayed luminescence and femtosecond-transient absorption studies suggest that Sb3+ emission originates from exciton transfer (ET) from Cd-PVK host to Sb3+ dopant, while such ET cannot occur with Pb2+-doped Cd-PVK because of the mismatch of energy levels. In addition, density function theory calculations indicate that the introduced Sb3+ likely replace the Cd2+ ions along with the deprotonation of butanediammonium for charge balance, instead of generating Cd2+ vacancies. This work provides a deeper understanding of the ET of Sb3+-doped Cd-PVK and suggests an effective strategy to achieve efficient triplet Sb3+ emission beyond 0D Cl-based hybrids.

16.
ACS Appl Mater Interfaces ; 13(27): 32022-32030, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34196177

RESUMO

It is a generally accepted perspective that type-II nanocrystal quantum dots (QDs) have low quantum yield due to the separation of the electron and hole wavefunctions. Recently, high quantum yield levels were reported for cadmium-based type-II QDs. Hence, the quest for finding non-toxic and efficient type-II QDs is continuing. Herein, we demonstrate environmentally benign type-II InP/ZnO/ZnS core/shell/shell QDs that reach a high quantum yield of ∼91%. For this, ZnO layer was grown on core InP QDs by thermal decomposition, which was followed by a ZnS layer via successive ionic layer adsorption. The small-angle X-ray scattering shows that spherical InP core and InP/ZnO core/shell QDs turn into elliptical particles with the growth of the ZnS shell. To conserve the quantum efficiency of QDs in device architectures, InP/ZnO/ZnS QDs were integrated in the liquid state on blue light-emitting diodes (LEDs) as down-converters that led to an external quantum efficiency of 9.4% and a power conversion efficiency of 6.8%, respectively, which is the most efficient QD-LED using type-II QDs. This study pointed out that cadmium-free type-II QDs can reach high efficiency levels, which can stimulate novel forms of devices and nanomaterials for bioimaging, display, and lighting.

17.
ACS Appl Mater Interfaces ; 13(29): 34486-34494, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34282882

RESUMO

Photocatalytic CO2 conversion into reproducible chemical fuels (e.g., CO, CH3OH, or CH4) provides a promising scheme to solve the increasing environmental problems and energy demands simultaneously. However, the efficiency is severely restricted by the high overpotential of the CO2 reduction reaction (CO2RR) and rapid recombination of photoexcited carriers. Here, we propose that a novel type-II photocatalytic mechanism based on two-dimensional (2D) ferroelectric multilayers would be ideal for addressing these issues. Using density-functional theory and nonadiabatic molecular dynamics calculations, we find that the ferroelectric CuInP2S6 bilayers exhibit a staggered band structure induced by the vertical intrinsic electric fields. Different from the traditional type-II band alignment, the unique structure of the CuInP2S6 bilayer not only effectively suppresses the recombination of photogenerated electron-hole (e-h) pairs but also produces a sufficient photovoltage to drive the CO2RR. The predicted recombination time of photogenerated e-h pairs, 1.03 ns, is much longer than the transferring times of photoinduced electrons and holes, 5.45 and 0.27 ps, respectively. Moreover, the overpotential of the CO2RR will decrease by substituting an S atom with a Cu atom, making the redox reaction proceed spontaneously under solar radiation. The solar-to-fuel efficiency with an upper limit of 8.40% is achieved in the CuInP2S6 bilayer and can be further improved to 32.57% for the CuInP2S6 five-layer. Our results indicate that this novel type-II photocatalytic mechanism would be a promising way to achieve highly efficient photocatalytic CO2 conversion based on the 2D ferroelectric multilayers.

18.
ACS Appl Mater Interfaces ; 13(48): 58170-58178, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818892

RESUMO

In recent years, core-shell lead halide perovskite nanocrystals (PeNCs) and their devices have attracted intensive attention owing to nearly perfect optoelectronic properties. However, the complex photophysical mechanism among them is still unclear. Herein, monodispersed core-shell PeNCs coated with an all-inorganic cesium lead bromide (CsPbBr3) shell epitaxially grown on the surface of formamidinium lead bromide (FAPbBr3) PeNCs were synthesized. Through power- and temperature-dependent photoluminescence (PL) measurements, it is found that the electronic structure of the core-shell FAPbBr3/CsPbBr3 PeNCs has a quasi-type II band alignment. The presence of Cs+ in the shell limits ion migration and helps to stabilize structural and optical properties. On this basis, after being exposed to pulsed nanosecond laser for a period, an amplified spontaneous emission (ASE) can be observed, which is attributed to the effective passivation induced by laser irradiation on defects at the interface. The ASE threshold of the core-shell PeNCs showing high structural and optical stability is 447 nJ/cm2 under pulsed nanosecond optical pumping. The results that are demonstrated here provide a new idea and perspective for improving the stability of perovskite and can be of practical interest for the utilization of the core-shell PeNCs in optoelectronic devices.

19.
Nanomaterials (Basel) ; 10(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076468

RESUMO

First-principle calculations based on the density functional theory (DFT) are implemented to study the structural and electronic properties of the SiS2/WSe2 hetero-bilayers. It is found that the AB-2 stacking model is most stable among all the six SiS2/WSe2 heterostructures considered in this work. The AB-2 stacking SiS2/WSe2 hetero-bilayer possesses a type-II band alignment with a narrow indirect band gap (0.154 eV and 0.738 eV obtained by GGA-PBE and HSE06, respectively), which can effectively separate the photogenerated electron-hole pairs and prevent the recombination of the electron-hole pairs. Our results revealed that the band gap can be tuned effectively within the range of elastic deformation (biaxial strain range from -7% to 7%) while maintaining the type-II band alignment. Furthermore, due to the effective regulation of interlayer charge transfer, the band gap along with the band offset of the SiS2/WSe2 heterostructure can also be modulated effectively by applying a vertical external electric field. Our results offer interesting alternatives for the engineering of two-dimensional material-based optoelectronic nanodevices.

20.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260916

RESUMO

Antimonene is found to be a promising material for two-dimensional optoelectronic equipment due to its broad band gap and high carrier mobility. The van der Waals heterostructure, as a unique structural unit for the study of photoelectric properties, has attracted great attention. By using ab initio density functional theory with van der Waals corrections, we theoretically investigated the structural and electronic properties of the heterostructures composed of antimonene and monolayer MoS2. Our results revealed that the Sb/MoS2 hetero-bilayer is an indirect semiconductor with type-II band alignment, which implies the spatial separation of photogenerated electron-hole pairs. Due to the weak van der Waals interlayer interactions between the adjacent sheets of the hetero-bilayer systems, the band structures of isolated antimonene and monolayer MoS2 are preserved. In addition, a tunable band gap in Sb/MoS2 hetero-bilayer can be realized by applying in-plane biaxial compressing/stretching. When antimonene and monolayer MoS2 are stacked into superlattices, the indirect semiconductors turn into direct semiconductors with the decreased band gaps. Our results show that the antimonene-based hybrid structures are good candidate structures for photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa