Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(4): 1728-1742, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38775077

RESUMO

PURPOSE: To develop a digital reference object (DRO) toolkit to generate realistic breast DCE-MRI data for quantitative assessment of image reconstruction and data analysis methods. METHODS: A simulation framework in a form of DRO toolkit has been developed using the ultrafast and conventional breast DCE-MRI data of 53 women with malignant (n = 25) or benign (n = 28) lesions. We segmented five anatomical regions and performed pharmacokinetic analysis to determine the ranges of pharmacokinetic parameters for each segmented region. A database of the segmentations and their pharmacokinetic parameters is included in the DRO toolkit that can generate a large number of realistic breast DCE-MRI data. We provide two potential examples for our DRO toolkit: assessing the accuracy of an image reconstruction method using undersampled simulated radial k-space data and assessing the impact of the B 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneity on estimated parameters. RESULTS: The estimated pharmacokinetic parameters for each region showed agreement with previously reported values. For the assessment of the reconstruction method, it was found that the temporal regularization resulted in significant underestimation of estimated parameters by up to 57% and 10% with the weighting factor λ = 0.1 and 0.01, respectively. We also demonstrated that spatial discrepancy of v p $$ {v}_p $$ and PS $$ \mathrm{PS} $$ increase to about 33% and 51% without correction for B 1 + $$ {\mathrm{B}}_1^{+} $$ field. CONCLUSION: We have developed a DRO toolkit that includes realistic morphology of tumor lesions along with the expected pharmacokinetic parameter ranges. This simulation framework can generate many images for quantitative assessment of DCE-MRI reconstruction and analysis methods.


Assuntos
Algoritmos , Neoplasias da Mama , Mama , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Meios de Contraste/farmacocinética , Interpretação de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Simulação por Computador , Adulto , Aumento da Imagem/métodos , Sensibilidade e Especificidade
2.
Diagnostics (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980417

RESUMO

Ultrafast (UF) dynamic contrast-enhanced (DCE)-MRI offers the potential for a faster and, therefore, less expensive examination of breast lesions; however, there are no reports that have evaluated whether UF DCE-MRI can be used the same as conventional DCE-MRI in the reading of morphological information. This study evaluated the agreement in morphological information obtained from malignant breast mass lesions between UF DCE-MRI and conventional DCE-MRI. UF DCE-MRI data were obtained over the first 60 s post-contrast injection, followed by the conventional DCE images. Two readers evaluated the size and morphology of the lesions in the final phase of the UF DCE-MRI and the early phase of the conventional DCE-MRI. Inter-method agreement in morphological information was evaluated for the two readers using the intraclass correlation coefficient for size, and the kappa statistics for the morphological descriptors. Differences in the proportion of each descriptor were examined using Fisher's test of independence. Most inter-method agreements were higher than substantial. UF DCE-MRI showed a circumscribed margin and homogeneous enhancement more often than conventional imaging. However, the percentages of readings showing the same morphology assessment between the UF DCE-MRI and conventional DCE-MRI were 71.2% (136/191) for Reader 1 and 69.1% (132/191) for Reader 2. We conclude that UF DCE-MRI may replace conventional DCE-MRI to evaluate the morphological information of malignant breast mass lesions.

3.
Magn Reson Imaging ; 104: 9-15, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37611646

RESUMO

PURPOSE: To assess whether measurement of the bilateral asymmetry of semiquantitative and quantitative perfusion parameters from ultrafast dynamic contrast-enhanced MRI (DCE-MRI), allows early prediction of pathologic response after neoadjuvant chemotherapy (NAC) in patients with HER2+ breast cancer. MATERIALS AND METHODS: Twenty-eight female patients with HER2+ breast cancer treated with NAC who underwent pre-NAC ultrafast DCE-MRI (3-9 s/phase) were enrolled for this study. Four semiquantitative and two quantitative parenchymal parameters were calculated for each patient. Ipsilateral/contralateral (I/C) ratio (for four parameters) and the difference between (for two parameters) ipsi- and contra-lateral parenchymal kinetic parameters (kBPE) were compared for patients with pathologic complete response (pCR) and those having residual disease. Lasso regression with leave-one-out cross validation was used to determine the optimal combination of parameters for a regression model and multivariable logistic regression was used to identify independent predictors for pCR. Chi-squared test, two-sided t-test and Kruskal-Wallis test were used. RESULTS: The Ktrans I/C ratio cutoff value of 1.11 had a sensitivity of 83.3% and specificity of 75% for pCR. The ve I/C ratio cutoff value of 1.1 had a sensitivity of 75% and specificity of 81.3% for pCR. The area under the receiver operating characteristic curve of the three-kBPE parameter model, including initial area under the enhancement curve (AUC30) I/C ratio, KtransI/C ratio and ve I/C ratio, was 0.89 with sensitivity of 91.7% at specificity of 81.3%. CONCLUSION: Quantitative assessment of bilateral asymmetry kBPE from pre-NAC ultrafast DCE-MRI can predict pCR in patients with HER2+ breast cancer.

4.
Jpn J Radiol ; 39(8): 791-801, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33743147

RESUMO

PURPOSE: To evaluate the diagnostic performance of ultrafast and standard dynamic contrast-enhanced (DCE)-MRI in evaluating the residual disease after neoadjuvant chemotherapy (NAC) for breast cancer. MATERIALS AND METHODS: Sixty-seven consecutive patients underwent MRI after NAC. Visual analysis of enhancement was performed on ultrafast and standard DCE-MRI, and compared between no residual disease and residual disease groups. The lesion diameters measured on the last phase of ultrafast DCE-MRI and early and delayed phases of standard DCE-MRI were compared with pathological diameter of entire residual cancer and residual invasive ductal carcinoma (IDC). RESULTS: The visual analysis in the delayed phase of standard DCE-MRI exhibited the highest sensitivity (90%), whereas ultrafast DCE-MRI revealed the highest positive predictive value (92%). There were no significant differences between the diameters in the delayed phase of the standard DCE-MRI and the pathological entire residual cancer (p = 0.97), and the diameters in ultrafast DCE-MRI and the pathological residual IDC (p = 0.97). CONCLUSION: The delayed phase of standard DCE-MRI may be effective for detecting the residual disease and evaluating the extension of entire residual cancer. Enhancement in ultrafast DCE-MRI may be strongly suggestive of the presence of residual disease, and effective for evaluating the extension of residual IDC.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Meios de Contraste , Feminino , Humanos , Imageamento por Ressonância Magnética , Neoplasia Residual/diagnóstico por imagem , Fatores de Tempo
5.
Acad Radiol ; 25(3): 349-358, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29167070

RESUMO

RATIONALE AND OBJECTIVES: This study aimed to test high temporal resolution dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for different zones of the prostate and evaluate its performance in the diagnosis of prostate cancer (PCa). Determine whether the addition of ultrafast DCE-MRI improves the performance of multiparametric MRI. MATERIALS AND METHODS: Patients (n = 20) with pathologically confirmed PCa underwent preoperative 3T MRI with T2-weighted, diffusion-weighted, and high temporal resolution (~2.2 seconds) DCE-MRI using gadoterate meglumine (Guerbet, Bloomington, IN) without an endorectal coil. DCE-MRI data were analyzed by fitting signal intensity with an empirical mathematical model to obtain parameters: percent signal enhancement, enhancement rate (α), washout rate (ß), initial enhancement slope, and enhancement start time along with apparent diffusion coefficient (ADC) and T2 values. Regions of interests were placed on sites of prostatectomy verified malignancy (n = 46) and normal tissue (n = 71) from different zones. RESULTS: Cancer (α = 6.45 ± 4.71 s-1, ß = 0.067 ± 0.042 s-1, slope = 3.78 ± 1.90 s-1) showed significantly (P <.05) faster signal enhancement and washout rates than normal tissue (α = 3.0 ± 2.1 s-1, ß = 0.034 ± 0.050 s-1, slope = 1.9 ± 1.4 s-1), but showed similar percentage signal enhancement and enhancement start time. Receiver operating characteristic analysis showed area under the curve for DCE parameters was comparable to ADC and T2 in the peripheral (DCE 0.67-0.82, ADC 0.80, T2 0.89) and transition zones (DCE 0.61-0.72, ADC 0.69, T2 0.75), but higher in the central zone (DCE 0.79-0.88, ADC 0.45, T2 0.45) and anterior fibromuscular stroma (DCE 0.86-0.89, ADC 0.35, T2 0.12). Importantly, combining DCE with ADC and T2 increased area under the curve by ~30%, further improving the diagnostic accuracy of PCa detection. CONCLUSION: Quantitative parameters from empirical mathematical model fits to ultrafast DCE-MRI improve diagnosis of PCa. DCE-MRI with higher temporal resolution may capture clinically useful information for PCa diagnosis that would be missed by low temporal resolution DCE-MRI. This new information could improve the performance of multiparametric MRI in PCa detection.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Meios de Contraste , Humanos , Masculino , Meglumina , Pessoa de Meia-Idade , Compostos Organometálicos , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Curva ROC
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa